留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

导弹从发射箱热发射过程的数值分析

梁晓扬 苏逸飞 乐贵高

梁晓扬,苏逸飞,乐贵高.导弹从发射箱热发射过程的数值分析[J].航空动力学报,2022,37(8):1643‑1653. doi: 10.13224/j.cnki.jasp.20210308
引用本文: 梁晓扬,苏逸飞,乐贵高.导弹从发射箱热发射过程的数值分析[J].航空动力学报,2022,37(8):1643‑1653. doi: 10.13224/j.cnki.jasp.20210308
LIANG Xiaoyang,SU Yifei,LE Guigao.Numerical analysis of hot launch of missile from a launch canister[J].Journal of Aerospace Power,2022,37(8):1643‑1653. doi: 10.13224/j.cnki.jasp.20210308
Citation: LIANG Xiaoyang,SU Yifei,LE Guigao.Numerical analysis of hot launch of missile from a launch canister[J].Journal of Aerospace Power,2022,37(8):1643‑1653. doi: 10.13224/j.cnki.jasp.20210308

导弹从发射箱热发射过程的数值分析

doi: 10.13224/j.cnki.jasp.20210308
详细信息
    作者简介:

    梁晓扬(1989-),男,博士生,研究领域导弹发射过程热力环境。E⁃mail:Mr_Liangxiao@163.com

    通讯作者:

    乐贵高(1964-),男,教授,博士,主要从事火箭导弹发射系统流体力学数值模拟。E⁃mail:leguigao@njust.edu.cn

  • 中图分类号: V231.1

Numerical analysis of hot launch of missile from a launch canister

  • 摘要:

    采用三维可压缩雷诺平均Navier⁃Stokes方程和k⁃ε湍流模型,研究了导弹出箱过程中,弹体姿态偏转后弹底周围环境及发射箱内的流场特性。首先,以超声速欠膨胀射流撞击平板实验为算例,对数值方法的有效性进行验证。其次,分别对导弹在约束期和半约束期箱内流动特性展开研究。研究表明:喷管尾流在发射箱内会形成强烈的引射效应。同时,在弹底会出现明显的回流区域,使导弹出箱时受到额外的阻力。考虑偏转后,发射装置受到的冲击载荷增大2倍以上,发射箱壁面受到的压力增加40%。而且,在半约束期,箱内的流场分布不再对称,会使得导弹受到额外的不平衡力矩。

     

  • 图 1  发射箱模型图

    Figure 1.  Schematic diagram of the launch canister

    图 2  导弹出箱过程(单位:mm)

    Figure 2.  Missile out of the box process (unit:mm)

    图 3  计算域模型

    Figure 3.  Computational domain

    图 4  计算网格

    Figure 4.  Computational grid

    图 5  Grid a~Grid d沿喷嘴轴线上的压力分布

    Figure 5.  Pressure distributions along the nozzle axis of the Grid a~Grid d

    图 6  实验结果与本文计算结果流场对比图

    Figure 6.  Flow field comparison between experimental results and calculation results

    图 7  数值结果与实验结果比较

    Figure 7.  Numerical results compared with experimental results

    图 8  在对称平面和Z=2.0D,Z=6.3D处马赫数分布

    Figure 8.  Mach number distribution in the symmetry plane and Z=2.0D,Z=6.3D

    图 9  全约束期对称平面上速度矢量

    Figure 9.  Velocity vector in the symmetry plane during full constraint period

    图 10  X=0.6DX=2.0D处的速度矢量

    Figure 10.  Velocity vector at X=0.6D and X=2.0D

    图 11  对称平面和X=2.0DX=6.3D横截面上的马赫数分布

    Figure 11.  Mach number distribution in the symmetry plane and X=2.0D,X=6.3D cross section

    图 12  发射箱上表面温度分布

    Figure 12.  Temperature distribution on the upper surface of the launch canister

    图 13  对称平面上速度矢量图

    Figure 13.  Velocity vector in the symmetry plane

  • [1] BERTIN J,BERTIN R,YUNG A,et al.The launch⁃tube flow⁃field for a vertical launching system[R].AIAA 88⁃0332,1988.
    [2] SAMIMY M,TURNER W,ADDY A.Backflow induced unsteady aerodynamic forces during tube launch[R].AIAA 87⁃0464,1987.
    [3] BOUSLOG S A,BERTIN J J,WINGERT W B.Flowfield produced by rocket exhaust impingement of a multitube launcher[J].Journal of Spacecraft and Rockets,1984,21(4):323⁃329.
    [4] BERLIN J J,BATSON J L.Experimentally determined rocket⁃exhaust flowfield in a constrictivetube launcher[J].Journal of Spacecraft and Rockets,1975,12(12):711⁃717.
    [5] 张程,李新田,廖选平,等.固体火箭发动机后效推力对导弹底阻影响的数值仿真[J].航空动力学报,2017,32(6):1530⁃1536.

    ZHANG Cheng,LI Xintian,LIAO Xuanping,et al.Numerical simulation of influences of solid rocket motor post⁃thrust on missile base drag[J].Journal of Aerospace Power,2017,32(6):1530⁃1536.(in Chinese)
    [6] LAMONT P J,HUNT B L.The impingement of underexpanded,axisymmetric jets on perpendicular and inclined flat plates[J].Journal of Fluid Mechanics,1980,100(3):471⁃511.
    [7] NAKAI Y,FUJIMATSU N,FUJII K.Flow classification of the under⁃expanded super sonic jet impinging on a flat plate[R].AIAA 2003⁃3467,2003.
    [8] NAKAI Y,FUJIMATSU N,FUJII K.Experimental study of underexpanded supersonic jet impingement on an inclined flat plate[J].AIAA Journal,2006,44(11):2691⁃2699.
    [9] BERLIN J J,BATSON J L.Experimentally determined rocket⁃exhaust flowfield in a constrictivetube launcher[J].Journal of Spacecraft and Rockets,1975,12(12):711⁃717.
    [10] SINHA P K,CHAKRABORTY D.Numerical study of hot launch of missile inside a tube[J].Journal of Aerospace Engineering,2014,228(14):2604⁃2611.
    [11] KORST H H,BERTIN J J.Analysis of secondary flows for tube⁃launched rocket configurations[J].Journal of Spacecraft and Rockets,1983,20(1):35⁃42.
    [12] VATSA V N,WEDAN B W.Development of a multigrid code for 3⁃D Navier⁃Stokes equations and its application to a grid⁃refinement study[J].Computers & Fluids,1990,18(4):391⁃403.
    [13] BUSH M B,TANNER R I.Numerical solution of viscous flows using integral equation methods[J].International Journal for Numerical Methods in Fluids,1983,3(1):71⁃92.
    [14] SHIH T H,LIOU W W,SHABBIR A,et al.A new k⁃ϵ eddy viscosity model for high reynolds number turbulent flows[J] Computers & Fluids 1995,24(3):227‑238.
    [15] EL⁃AMIN,M F,SUN S,HEIDEMANN W,et al.Analysis of a turbulent buoyant confined jet modeled using realizable k‑ɛ model[J].Heat and Mass Transfer,2010,46(8):943⁃960.
    [16] CHIMA R,LIOU M S.Comparison of the AUSM+ and H⁃CUSP schemes for turbomachinery applications[R].AIAA 2003⁃4120,2003.
    [17] VENKATAKRISHNAN V.Convergence to steady state solutions of the Euler equations on unstructured grids with limiters[J].Journal of Computational Physics,1995,118(1):120‑130.
    [18] ALVI F,IYER K.Mean and unsteady flowfield properties of supersonic impinging jets with lift plates[R].AIAA 99⁃1829,1999.
  • 加载中
图(17)
计量
  • 文章访问数:  75
  • HTML浏览量:  26
  • PDF量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-17

目录

    /

    返回文章
    返回