留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于煤油的旋转爆轰发动机流场数值模拟

杨帆 王宇辉 李世全 张国庆

杨帆,王宇辉,李世全,等.基于煤油的旋转爆轰发动机流场数值模拟[J].航空动力学报,2022,37(8):1620‑1632. doi: 10.13224/j.cnki.jasp.20210339
引用本文: 杨帆,王宇辉,李世全,等.基于煤油的旋转爆轰发动机流场数值模拟[J].航空动力学报,2022,37(8):1620‑1632. doi: 10.13224/j.cnki.jasp.20210339
YANG Fan,WANG Yuhui,LI Shiquan,et al.Numerical simulations of flow field of rotating detonation engine fueled by kerosene[J].Journal of Aerospace Power,2022,37(8):1620‑1632. doi: 10.13224/j.cnki.jasp.20210339
Citation: YANG Fan,WANG Yuhui,LI Shiquan,et al.Numerical simulations of flow field of rotating detonation engine fueled by kerosene[J].Journal of Aerospace Power,2022,37(8):1620‑1632. doi: 10.13224/j.cnki.jasp.20210339

基于煤油的旋转爆轰发动机流场数值模拟

doi: 10.13224/j.cnki.jasp.20210339
基金项目: 

装备预先研究领域基金 61407200113

国家自然科学基金 91741202

中央高校基本科研业务费专项资金 buctrc201913

详细信息
    作者简介:

    杨帆(1996-),男,硕士生,研究领域为旋转爆轰发动机。E⁃mail:yfhbxt@163.com

    通讯作者:

    王宇辉(1986-),男,副教授,博士,研究领域为旋转爆轰发动机。E⁃mail:aowuki@163.com

  • 中图分类号: V231

Numerical simulations of flow field of rotating detonation engine fueled by kerosene

  • 摘要:

    为了深入研究气液两相旋转爆轰发动机的流场结构,建立了非定常两相爆轰的Eulerian⁃Lagrangian模型,使用SST(shear⁃stress transport) k⁃ω模型,采用一步反应机理的化学反应模型,进行了煤油/空气非预混的二维数值模拟。结果表明,采用30 μm粒径的液滴颗粒,在来流总温1 000 K的空气流中,液滴经历雾化破碎、蒸发、混合过程,在当量比0.70~1.15范围,形成稳定单个旋转爆轰波;煤油液滴被爆轰波扫过后未完全燃烧,部分煤油组分混杂在高温产物中沿下游排出;在燃烧室入口处,爆轰波前形成的空气三角形区域面积大于液滴颗粒三角形区域。

     

  • 图 1  RDE模型简图

    Figure 1.  Schematic diagram of RDE model

    图 2  当量比为1.00的离散相体积分数

    Figure 2.  Dispersed phase model volume fraction at equivalence ratio of 1.00

    图 8  当量比为1.00温度和压力周向分布(y=0.01 m)

    Figure 8.  Circumferential distribution of temperature and pressure at equivalence ratio of 1.00 (y=0.01 m)

    图 9  当量比为1.00的煤油质量分数

    Figure 9.  Mass fraction of C12H23 at equivalence ratio of 1.00

    图 10  不同当量比煤油组分沿轴向的变化

    Figure 10.  Mass fraction of C12H23 at different equivalence ratios varying with axial position

    图 11  不同当量比混合效率随轴向的变化

    Figure 11.  Mix efficiency at different equivalence ratios varying with axial position

    图 15  爆轰波在周向不同位置的化学反应速率(t=0.905~0.981 ms)

    Figure 15.  Kinetic rate of reaction of detonation wave at different circumferential location (t=0.905~0.981 ms)

    图 16  不同当量比的爆轰波速度和温度

    Figure 16.  Detonation wave velocity and temperature at different equivalence ratios

    图 17  不同当量比爆轰波前的煤油质量分数

    Figure 17.  Mass fraction of C12H23 before detonation wave at different equivalence ratios

    表  1  计算反应速率所用常数

    Table  1.   Constant used to calculate the reaction rate

    A/109bE/108 (J/kmol)R/(J/(molK))
    2.58701.2568.314
    下载: 导出CSV

    表  2  不同网格尺寸计算所得的爆轰波平均速度和温度

    Table  2.   Average velocity and temperature of detonation wave calculated by different cell sizes

    网格单元尺寸/mm波速/(m/s)温度/K
    0.201 1702 509
    0.251 1602 500
    0.401 2002 543
    0.501 2402 482
    下载: 导出CSV

    表  3  不同工况的ωϕ

    Table  3.   ωϕ under different conditions

    当量比0.700.851.001.15
    wϕ0.0460.0550.0640.073
    下载: 导出CSV
  • [1] TANG X M,WANG J P,SHAO Y T.Three dimensional numerical investigations of the rotating detonation engine with a hollow combustor[J].Combustion and Flame,2015,162(4):997⁃1008.
    [2] LEI Z D,CHEN Z W,YANG X Q,et al.Operational mode transition in a rotating detonation engine[J].Journal of Zhejiang University (Science A),2020,21(9):721⁃733.
    [3] JI Z F,ZHANG H Q,WANG B.Thermodynamic perfor⁃ mance analysis of the rotating detonative airbreathing combined cycle engine[J].Aerospace Science and Technology,2021,113:106694.1⁃106694.17.
    [4] YANG X K,SONG F L,WU Y,et al.Investigation of rotating detonation fueled by a methane‑hydrogen‑carbon dioxide mixture under lean fuel conditions[J].International Journal of Hydrogen Energy,2020,45(41):21995⁃22007.
    [5] BENNEWITZ J W,BLAINE B R,PILGRAM J J,et al.Modal transitions in rotating detonation rocket engines[J].International Journal of Energetic Materials and Chemical Propulsion,2019,18(2):91⁃109.
    [6] FOTIA M L,KAEMMING T A,HOKE J,et al.Study of the experimental performance of a rotating detonation engine with nozzled exhaust flow[R].AIAA⁃2015⁃0631,2015.
    [7] FOTIA M,SCHAUER F,HOKE J.Experimental study of performance scaling in rotating detonation engines operated on hydrogen and gaseous hydrocarbon fuel[R].AIAA⁃2015⁃ 3626,2015.
    [8] FROLOV S M,AKSENOV V S,IVANOV V S.Experi⁃ mental proof of Zel'dovich cycle efficiency gain over cycle with constant pressure combustion for hydrogen⁃oxygen fuel mixture[J].International Journal of Hydrogen Energy,2015,40(21):6970⁃6975.
    [9] WANG Y H,LE J L.Rotating detonation engines with two fuel orifice schemes[J].Acta Astronautica,2019,161:262‑275.
    [10] RANKIN B A,RICHARDSON D R,CASWELL A W,et al.Imaging of OH* chemiluminescence in an optically accessible nonpremixed rotating detonation engine[R].AIAA⁃2015⁃1604,2015.
    [11] RANKIN B A,CHRISTOPHER A,et al.Evaluation of mixing processes in a non⁃premixed rotating detonation engine using acetone PLIF imaging[R].AIAA‑2016‑1198,2016.
    [12] THEUERKAUF S W,SCHAUER F R,ANTHONY R.et al.Comparison of simulated and measured instantaneous heat flux in a rotating detonation engine[R].AIAA⁃2016⁃1200,2016.
    [13] 马虎,张义宁,杨成龙,等.燃料分布对旋转爆震波传播特性影响[J].航空动力学报,2019,34(3):513⁃520.

    MA Hu,ZHANG Yining,YANG Chenglong,et al.Effect of fuel distribution on propagation of rotating detonation wave[J].Journal of Aerospace Power,2019,34(3):513⁃520.(in Chinese)
    [14] 徐雪阳,卓长飞,武晓松,等.非预混喷注对旋转爆震发动机影响的数值研究[J].航空学报,2016,37(4):1184⁃1195.

    XU Xueyang,ZHUO Changfei,WU Xiaosong,et al.Numerical simulation of injection schemes with separate supply of fuel and oxidizer effects on ratating detonation engine[J].Acta Aeronautica et Astronautica Sinica,2016,37(4):1184⁃1195.(in Chinese)
    [15] 刘世杰,林志勇,刘卫东,等.旋转爆震波发动机二维数值模拟[J].推进技术,2010,31(5):634⁃640.

    LIU Shijie,LIN Zhiyong,LIU Weidong,et al.Two⁃dimensional numerical simulation of rotating detonation wave engine[J].Journal of Propulsion Technology,2010,31(5):634⁃640.(in Chinese)
    [16] BATISTA A,ROSS M,LIETZ C,et al.Detonation wave interaction classifications in a rotating detonation rocket engine[R].AIAA⁃2020⁃3861,2020.
    [17] PAL P,XU C.KUMAR G,et al.Large⁃eddy simula⁃ tions and mode analysis of ethylene/air combustion in a non⁃premixed rotating detonation engine[R].AIAA‑2020‑3876,2020.
    [18] 邵业涛,王健平,唐新猛,等.连续旋转爆轰发动机流场三维数值模拟[J].航空动力学报,2010,25(8):1717⁃1722.

    SHAO Yetao,WANG Jianping,TANG Xinmeng,et al.Three⁃dimensional numerical simulation of continuous rotating detonation engine flowfields[J].Journal of Aerospace Power,2010,25(8):1717⁃1722.(in Chinese)
    [19] 邵业涛,王健平,李韶武,等.空心圆筒内连续旋转爆轰波三维数值模拟[C]∥第十四届全国激波与激波管学术会议论文集.安徽 黄山:中国力学学会,2010:181⁃188.
    [20] SUN J,ZHOU J,LIU S J,et al.Numerical investigation of a non⁃premixed hollow rotating detonation engine[J].International Journal of Hydrogen Energy,2019,44(31):17084⁃17094.
    [21] PAXSON D E,FOTIA M L,HOKE J,et al.Comparison of numerically simulated and experimentally measured performance of a rotating detonation engine[R].AIAA⁃2015⁃1011,2015.
    [22] WANG F,WENG C S,WU Y W,et al.Numerical research on kerosene/air rotating detonation engines under different injection total temperatures[J].Aerospace Science and Technology,2020,103:105899.1⁃105899.15.
    [23] 李宝星,许桂阳,舒慧明,等.燃烧室轴向和周向长度对气液两相旋转爆轰特性的影响[J].航空动力学报,2020,35(8):1601⁃1611.

    LI Baoxing,XU Guiyang,SHU Huiming,et al.Influence of axial and circumferential lengths of combustion chamber on gas⁃liquid two⁃phase rotating detonation characteristics[J].Journal of Aerospace Power,2020,35(8):1601⁃1611.(in Chinese)
    [24] ZHAO N B,MENG Q Y,ZHENG H T,et al.Numerical study of the influence of annular width on the rotating detonation wave in a non⁃premixed combustor[J].Aerospace Science and Technology,2020,100:105825.1⁃105825.12.
    [25] MENG Q,ZHAO N,ZHENG H,et al.A numerical study of rotating detonation wave with different numbers of fuel holes[J].Aerospace Science and Technology,2019,93:105301.1⁃105301.17.
    [26] 周蕊,李晓鹏.连续旋转爆轰发动机冷流场的混合特性研究[J].航空学报,2016,37(12):3668⁃3674.

    ZHOU Rui,LI Xiaopeng.Numerical investigation of mixing characteristic of cold continuously rotating detonation engine[J].Acta Aeronautica et Astronautica Sinica,2016,37(12):3668⁃3674.(in Chinese)
    [27] LI J M,CHANG P H,LI L,et al.Investigation of injection strategy for liquid⁃fuel rotating detonation engine[R].AIAA⁃2018⁃0403,2018.
    [28] BYKOVSKII F A,ZHDAN S A,VEDERNIKOV E F.Continuous spin detonation of a heterogeneous kerosene‑air mixture with addition of hydrogen[J].Combust Explos Shock Waves,2016,52(3):371‑373.
    [29] BYKOVSKII F A,ZHDAN S A,VEDERNIKOV E F.Continuous detonation of the liquid kerosene‑air mixture with addition of hydrogen or syngas[J].Combust Explos Shock Waves,2019,55(5):589‑598.
    [30] ZHENG Q,MENG H L,WENG C S,et al.Experimental research on the instability propagation characteristics of liquid kerosene rotating detonation wave[J].Defence Technology,2020,16(6):1106⁃1115.
    [31] KINDRACKI J.Experimental research on rotating detonation in liquid fuel‑gaseous air mixtures[J].Aerospace Science and Technology,2015,43:445⁃453.
    [32] DABORA E K.A model for spray detonations[J].Acta Astronautica,1979,6(3):269⁃280.
    [33] GUBIN S A,SICHEL M.Calculation of the detonation velocity of a mixture of liquid fuel droplets and a gaseous oxidizer[J].Combustion Science and Technology,1977,17(3/4):109⁃117.
    [34] MENG Q Y,ZHAO M J,ZHENG H T,et al.Eulerian⁃Lagrangian modelling of rotating detonative combustion in partially pre⁃vaporized n⁃heptane sprays with hydrogen addition[J].Fuel,2021,290:119808.1⁃119808.17.
    [35] EIDELMAN S,BURCAT A.The mechanism of a detonation wave enhancement in a two⁃phase combustible medium[J].Symposium (International) on Combustion,1981,18(1):1661⁃1670.
    [36] HUANG Z W,ZHAO M J,XU Y,et al.Eulerian⁃Lagrangian modelling of detonative combustion in two⁃phase gas⁃droplet mixtures with OpenFOAM:validations and verifications[J].Fuel,2021,286:119402.1⁃119402.16.
    [37] 黄生洪,徐胜利,刘小勇.煤油超燃冲压发动机两相流场数值模拟:Ⅰ 数值校验及总体流场特征[J].推进技术,2004,25(6):484⁃490.

    HUANG Shenghong,XU Shengli,LIU Xiaoyong.Numerical investigation on two phase flow of a kerosene⁃fueled scramjet with 3D cavity:Ⅰ numerical calibration and characteristics of general flow[J].Journal of Propulsion Technology,2004,25(6):484⁃490.(in Chinese)
    [38] KAILASANATH K.Liquid⁃fueled detonations in tubes[J].Journal of Propulsion and Power,2006,22(6):1261⁃1268.
    [39] WANG Y H,WANG J P,QIAO W Y.Effects of thermal wall conditions on rotating detonation[J].Computers and Fluids,2016,140:59⁃71.
    [40] 阎宝林,张义宁,宫继双,等.液态碳氢燃料连续旋转爆震燃烧实验研究[R].长沙:第五届爆震与新型推进学术会议,2017.
  • 加载中
图(35) / 表(3)
计量
  • 文章访问数:  184
  • HTML浏览量:  72
  • PDF量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01

目录

    /

    返回文章
    返回