Optimization design and analysis of driving mechanism of redundant drive variable sweep wing
-
摘要:
为满足对宽速域变后掠飞行器的迫切需求,设计了一种适用于分布式驱动的局部旋转变后掠机翼的过约束冗余驱动机构。以传动性能为指标对单元驱动机构进行尺度初步设计,后结合SQP(sequence quadratic program)算法以机构变形全过程的能量转化率为优化目标对机构尺度进行了优化,优化后的驱动机构在恒定作用力下的输出功提高了44.3%,能量转化率提高了37.5%,驱动距离缩短了9.7%。为解决多个驱动支链驱动力如何分配的问题,将分析超静定结构内力的力法与传统机构受力分析方法结合提出一种准静态驱动力的求解方法,对一定负载及构件材料条件下的四翼梁模型进行了驱动力计算并基于ADAMS(automatic dynamic analysis of mechanical system)在相同负载及构件材料条件下做了动力学仿真实验验证驱动力分配模型的精确度,误差分析显示该模型对于准静态驱动过程驱动力计算误差小于5.5%。最后综合仿真结果及驱动机构的质量对驱动链数目进行优化,确定了最佳驱动链数目为3个。
-
关键词:
- 变后掠机翼 /
- 驱动机构尺度优化设计 /
- 准静态驱动力分析 /
- ADAMS动力学仿真 /
- 驱动链数目优化
Abstract:In order to meet the urgent demand of variable sweep aircraft in wide speed range, a kind of driving mechanism suitable for distributed driving of locally rotating variable sweep wing was designed. Taking the transmission performance as the index, the dimension of the unit driving mechanism was preliminarily designed, and then the SQP (sequence quadratic program) algorithm was combined to optimize the dimension of the mechanism with the energy conversion rate of the whole process of mechanism deformation as the optimization objective. The output work of the optimized driving mechanism under constant force was increased by 44.3%, the energy conversion rate was increased by 37.5%, and the driving distance was shortened by 9.7%. To solve the problem of how to distribute the driving force of multiple driving chains, a quasi-static driving force solution method was proposed by combining the force method of analyzing the internal force of statically indeterminate structure with the traditional force analysis method of mechanism. The driving force of the four wing beam models under certain load and component material conditions was calculated, and the dynamic simulation experiment was carried out based on ADAMS (automatic dynamic analysis of mechanical system) to verify the accuracy of the driving force distribution model. The error analysis showed that the calculation error of the quasi-static driving force of the model was less than 5.5%. Finally, based on the simulation results and the weight of the driving mechanism, the number of driving chains was optimized, and the optimal number of driving chains was determined to be 3.
-
表 1 优化前后机构性能对比
Table 1. Comparison of mechanism performance before and after optimization
特征 输出功/J 能量转化率/% 驱动距离/mm 优化前 219.1 50.8 431 优化后 316.1 81.3 388.7 表 2 驱动机构质量汇总
Table 2. Summary of drive mechanism weight
特征 电动机质量(kg)×
数量各丝杠导轨
质量/kg总质量/kg 二支链 2.86×2 1.29,0.80 7.81 三支链 2.00×3 0.90,0.56,0.34 7.80 四支链 1.90×4 0.86,0.53,0.32,0.11 9.42 -
[1] 段富海,初雨田,关文卿,等. 变形机翼的发展现状综述[J]. 机电工程技术,2021,50(1): 12-18. doi: 10.3969/j.issn.1009-9492.2021.01.003DUAN Fuhai,CHU Yutian,GUAN Wenqing,et al. A review of development status of morphing wing[J]. Mechanical & Electrical Engineering Technology,2021,50(1): 12-18. (in Chinese) doi: 10.3969/j.issn.1009-9492.2021.01.003 [2] 韩瀚,于勇,胡俊. 可变展长机翼非定常气动特性数值研究[J]. 北京理工大学学报,2017,37(2): 119-125. doi: 10.15918/j.tbit1001-0645.2017.02.002HAN Han,YU Yong,HU Jun. Numerical investigation on unsteady aerodynamic characteristics of variable-span morphing wing[J]. Transactions of Beijing Institute of Technology,2017,37(2): 119-125. (in Chinese) doi: 10.15918/j.tbit1001-0645.2017.02.002 [3] 马文风. 高超声速变形飞行器建模与纵向鲁棒控制方法研究[D]. 长沙: 国防科技大学, 2017.MA Wenfeng. Research on modeling and longitudinal robust control methods for hypersonic morphing aircrafts[D]. Changsha: National University of Defense Technology, 2017. (in Chinese) [4] 曹广宇. 并联机构驱动式变形翼动力学特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.CAO Guangyu. Research on dynamic characteristics of deformation wing driven by parallel mechanism[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese) [5] 许云涛. 智能变形飞行器发展及关键技术研究[J]. 战术导弹技术,2017(2): 26-33, 46. doi: 10.16358/j.issn.1009-1300.2017.02.05XU Yuntao. Research on the development and key technology of smart morphing aircraft[J]. Tactical Missile Technology,2017(2): 26-33, 46. (in Chinese) doi: 10.16358/j.issn.1009-1300.2017.02.05 [6] 徐钧恒,杨晓钧,李兵. 基于交叉簧片式铰链的变弯度机翼机构设计[J]. 浙江大学学报(工学版),2022,56(3): 444-451,509.XU Junheng,YANG Xiaojun,LI Bing. Design of wing mechanism with variable camber based on cross-spring flexural pivots[J]. Journal of Zhejiang University (Engineering Science),2022,56(3): 444-451,509. (in Chinese) [7] 谢绍辉. 形状记忆合金驱动变弯度机翼设计[D]. 南京: 南京航空航天大学, 2021.XIE Shaohui. Shape memory alloy driven variable curvature wing design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021. (in Chinese) [8] 支彭勃. 柔性机翼抗扭刚度补偿及扭转变形主动控制[D]. 南京: 南京航空航天大学, 2021.ZHI Pengbo. Torsional stiffness compensation and torsional deformation control of flexible wing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021. (in Chinese) [9] 倪迎鸽, 张伟, 吕毅, 等. 机翼折叠技术的应用及模拟分析[J]. 飞行力学, 2020, 38(6): 1-7.NI Yingge, ZHANG Wei, LÜ Yi, et al. Application and modeling analysis of wing folding technology[J]. Flight Dynamics, 2020, 38(6): 1-7. (in Chinese) [10] XU H,HUANG Q,HAN J,et al. Calculation of hinge moments for a folding wing aircraft based on high-order panel method[J]. Mathematical Problems in Engineering,2020,2020: 1-14. [11] 于海威. 形状记忆合金在变厚度机翼上的新型应用[J]. 内燃机与配件,2018(17): 234-235. doi: 10.3969/j.issn.1674-957X.2018.17.118YU Haiwei. New application of shape memory alloy in variable thickness wing[J]. Internal Combustion Engine & Parts,2018(17): 234-235. (in Chinese) doi: 10.3969/j.issn.1674-957X.2018.17.118 [12] 李扬. 变厚度机翼驱动系统研究[D]. 南京: 南京航空航天大学, 2012.LI Yang. Research on actuation system of a variable-thickness wing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese) [13] 陈钱,白鹏,尹维龙,等. 飞机外翼段大尺度剪切式变后掠设计与分析[J]. 空气动力学学报,2013,31(1): 40-46.CHEN Qian,BAI Peng,YIN Weilong,et al. Design and analysis of a variable-sweep morphing aircraft with outboard wing section large-scale shearing[J]. Acta Aerodynamica Sinica,2013,31(1): 40-46. (in Chinese) [14] 张耀, 俞公沼. 航空科学技术的发展[M]. 北京: 航空工业出版社, 2007. [15] GOMEZ J C,GARCIA E. Morphing unmanned aerial vehicles[J]. Smart Materials and Structures,2011,20(10): 103001. doi: 10.1088/0964-1726/20/10/103001 [16] JOO J J, SANDERS B, JOHNSON T, et al. Optimal actuator location within a morphing wing scissor mechanism configuration[C]//Smart Structures and Materials 2006: Modeling, Signal Processing, and Control, San Diego, California, US: SPIE, 2006: 24-35. [17] JOHNSON T,FRECKER M,ABDALLA M,et al. Nonlinear analysis and optimization of diamond cell morphing wings[J]. Journal of Intelligent Material Systems and Structures,2009,20(7): 815-824. doi: 10.1177/1045389X08098098 [18] MOOSAVIAN A. Variable geometry wing-box: toward a robotic morphing wing[D]. Ryerson: Ryerson University, 2014. [19] 王礼佳. 无人机变形翼的方案设计与仿真分析[D]. 哈尔滨: 哈尔滨工业大学, 2014.WANG Lijia. The scheme design of the uav morphing wing and simulation analysis[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese) [20] SHEN X,XU L,LI Q. Motion/Force constraint indices of redundantly actuated parallel manipulators with over constraints[J]. Mechanism and Machine Theory,2021,165: 104427. doi: 10.1016/j.mechmachtheory.2021.104427 [21] 刘文兰. 空间多闭环过约束机构受力机理分析[D]. 河北 秦皇岛: 燕山大学, 2018.LIU Wenlan. Force mechanism analysis of spatial multi-loop mechanisms with overconstrains[D]. Qinhuangdao Hebei: Yanshan University, 2018. (in Chinese) -