留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冗余驱动变后掠机翼驱动机构优化设计与分析

田应仲 姜汉斌 李龙 王文斌

田应仲, 姜汉斌, 李龙, 等. 冗余驱动变后掠机翼驱动机构优化设计与分析[J]. 航空动力学报, 2023, 38(11):2561-2573 doi: 10.13224/j.cnki.jasp.20210375
引用本文: 田应仲, 姜汉斌, 李龙, 等. 冗余驱动变后掠机翼驱动机构优化设计与分析[J]. 航空动力学报, 2023, 38(11):2561-2573 doi: 10.13224/j.cnki.jasp.20210375
TIAN Yingzhong, JIANG Hanbin, LI Long, et al. Optimization design and analysis of driving mechanism of redundant drive variable sweep wing[J]. Journal of Aerospace Power, 2023, 38(11):2561-2573 doi: 10.13224/j.cnki.jasp.20210375
Citation: TIAN Yingzhong, JIANG Hanbin, LI Long, et al. Optimization design and analysis of driving mechanism of redundant drive variable sweep wing[J]. Journal of Aerospace Power, 2023, 38(11):2561-2573 doi: 10.13224/j.cnki.jasp.20210375

冗余驱动变后掠机翼驱动机构优化设计与分析

doi: 10.13224/j.cnki.jasp.20210375
详细信息
    作者简介:

    田应仲(1973-),男,教授,博士,主要从事移动机器人、仿生机器人及宽速域变体机翼关键技术的研究

    通讯作者:

    王文斌(1976-),男,副教授,博士,主要从事软体机器人及工业机器人关键技术的研究及应用。E-mail:wangwenbin@szpt.edu.cn

  • 中图分类号: V224

Optimization design and analysis of driving mechanism of redundant drive variable sweep wing

  • 摘要:

    为满足对宽速域变后掠飞行器的迫切需求,设计了一种适用于分布式驱动的局部旋转变后掠机翼的过约束冗余驱动机构。以传动性能为指标对单元驱动机构进行尺度初步设计,后结合SQP(sequence quadratic program)算法以机构变形全过程的能量转化率为优化目标对机构尺度进行了优化,优化后的驱动机构在恒定作用力下的输出功提高了44.3%,能量转化率提高了37.5%,驱动距离缩短了9.7%。为解决多个驱动支链驱动力如何分配的问题,将分析超静定结构内力的力法与传统机构受力分析方法结合提出一种准静态驱动力的求解方法,对一定负载及构件材料条件下的四翼梁模型进行了驱动力计算并基于ADAMS(automatic dynamic analysis of mechanical system)在相同负载及构件材料条件下做了动力学仿真实验验证驱动力分配模型的精确度,误差分析显示该模型对于准静态驱动过程驱动力计算误差小于5.5%。最后综合仿真结果及驱动机构的质量对驱动链数目进行优化,确定了最佳驱动链数目为3个。

     

  • 图 1  变后掠机翼变形形式

    Figure 1.  Deformation form of variable swept wing

    图 2  驱动机构变形前后构型

    Figure 2.  Configuration of driving mechanism before and after deformation

    图 3  驱动机构闭环运动链

    Figure 3.  Closed loop kinematic chain of driving mechanism

    图 4  L2L3可选长度范围

    Figure 4.  Optional length range of L2 and L3

    图 5  L2L3的尺度综合结果

    Figure 5.  Scale synthesis results of L2 and L3

    图 6  压力角δα的变化趋势

    Figure 6.  Change of pressure angle δ with the change of α

    图 7  最大压力角δmax随机构尺度的变化

    Figure 7.  Variation of maximum pressure angle δmax with mechanism size

    图 8  被选点的压力角随α的变化

    Figure 8.  Pressure angle of selected point changes with α

    图 9  优化目标参考图

    Figure 9.  Optimization target reference map

    图 10  多支链冗余驱动布局

    Figure 10.  Layout of redundant drive with multiple branches

    图 11  驱动滑块做匀速运动准静态平衡分析

    Figure 11.  Quasi static balance analysis of driving slider in uniform motion

    图 12  滑块锁紧时静平衡分析

    Figure 12.  Static balance analysis of sliding block locking

    图 13  滑块锁紧时结构整体受力分析

    Figure 13.  Force analysis of the whole structure when the slider is locked

    图 14  力法基本结构

    Figure 14.  Basic structure of force method

    图 15  二支链冗余驱动的驱动力分析结果

    Figure 15.  Driving force analysis of two branch chain redundant drive

    图 16  三支链冗余驱动的驱动力分析结果

    Figure 16.  Driving force analysis of three branch chain redundant drive

    图 17  四支链冗余驱动的驱动力分析结果

    Figure 17.  Driving force analysis of four branch chain redundant drive

    图 18  冗余驱动动力学仿真

    Figure 18.  Dynamics simulation of redundant drive

    图 19  后掠角变化量随仿真时间的变化

    Figure 19.  Change of sweep angle with dynamic simulation time

    图 20  二支链冗余驱动仿真分析结果

    Figure 20.  Simulation analysis results of two branch chain redundant drive

    图 21  三支链冗余驱动仿真分析结果

    Figure 21.  Simulation analysis results of three branch chain redundant drive

    图 22  四支链冗余驱动仿真分析结果

    Figure 22.  Simulation analysis results of four branch chain redundant drive

    图 23  二支链冗余驱动误差分析

    Figure 23.  Error analysis of two branch chain redundant drive

    图 24  三支链冗余驱动误差分析

    Figure 24.  Error analysis of three branch chain redundant drive

    图 25  四支链冗余驱动误差分析

    Figure 25.  Error analysis of four branch chain redundant drive

    图 26  驱动电动机质量与其额定转矩的关系

    Figure 26.  Relationship between weight of driving motor and its rated torque

    表  1  优化前后机构性能对比

    Table  1.   Comparison of mechanism performance before and after optimization

    特征输出功/J能量转化率/%驱动距离/mm
    优化前219.150.8431
    优化后316.181.3388.7
    下载: 导出CSV

    表  2  驱动机构质量汇总

    Table  2.   Summary of drive mechanism weight

    特征电动机质量(kg)×
    数量
    各丝杠导轨
    质量/kg
    总质量/kg
    二支链2.86×21.29,0.807.81
    三支链2.00×30.90,0.56,0.347.80
    四支链1.90×40.86,0.53,0.32,0.119.42
    下载: 导出CSV
  • [1] 段富海,初雨田,关文卿,等. 变形机翼的发展现状综述[J]. 机电工程技术,2021,50(1): 12-18. doi: 10.3969/j.issn.1009-9492.2021.01.003

    DUAN Fuhai,CHU Yutian,GUAN Wenqing,et al. A review of development status of morphing wing[J]. Mechanical & Electrical Engineering Technology,2021,50(1): 12-18. (in Chinese) doi: 10.3969/j.issn.1009-9492.2021.01.003
    [2] 韩瀚,于勇,胡俊. 可变展长机翼非定常气动特性数值研究[J]. 北京理工大学学报,2017,37(2): 119-125. doi: 10.15918/j.tbit1001-0645.2017.02.002

    HAN Han,YU Yong,HU Jun. Numerical investigation on unsteady aerodynamic characteristics of variable-span morphing wing[J]. Transactions of Beijing Institute of Technology,2017,37(2): 119-125. (in Chinese) doi: 10.15918/j.tbit1001-0645.2017.02.002
    [3] 马文风. 高超声速变形飞行器建模与纵向鲁棒控制方法研究[D]. 长沙: 国防科技大学, 2017.

    MA Wenfeng. Research on modeling and longitudinal robust control methods for hypersonic morphing aircrafts[D]. Changsha: National University of Defense Technology, 2017. (in Chinese)
    [4] 曹广宇. 并联机构驱动式变形翼动力学特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    CAO Guangyu. Research on dynamic characteristics of deformation wing driven by parallel mechanism[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese)
    [5] 许云涛. 智能变形飞行器发展及关键技术研究[J]. 战术导弹技术,2017(2): 26-33, 46. doi: 10.16358/j.issn.1009-1300.2017.02.05

    XU Yuntao. Research on the development and key technology of smart morphing aircraft[J]. Tactical Missile Technology,2017(2): 26-33, 46. (in Chinese) doi: 10.16358/j.issn.1009-1300.2017.02.05
    [6] 徐钧恒,杨晓钧,李兵. 基于交叉簧片式铰链的变弯度机翼机构设计[J]. 浙江大学学报(工学版),2022,56(3): 444-451,509.

    XU Junheng,YANG Xiaojun,LI Bing. Design of wing mechanism with variable camber based on cross-spring flexural pivots[J]. Journal of Zhejiang University (Engineering Science),2022,56(3): 444-451,509. (in Chinese)
    [7] 谢绍辉. 形状记忆合金驱动变弯度机翼设计[D]. 南京: 南京航空航天大学, 2021.

    XIE Shaohui. Shape memory alloy driven variable curvature wing design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021. (in Chinese)
    [8] 支彭勃. 柔性机翼抗扭刚度补偿及扭转变形主动控制[D]. 南京: 南京航空航天大学, 2021.

    ZHI Pengbo. Torsional stiffness compensation and torsional deformation control of flexible wing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021. (in Chinese)
    [9] 倪迎鸽, 张伟, 吕毅, 等. 机翼折叠技术的应用及模拟分析[J]. 飞行力学, 2020, 38(6): 1-7.

    NI Yingge, ZHANG Wei, LÜ Yi, et al. Application and modeling analysis of wing folding technology[J]. Flight Dynamics, 2020, 38(6): 1-7. (in Chinese)
    [10] XU H,HUANG Q,HAN J,et al. Calculation of hinge moments for a folding wing aircraft based on high-order panel method[J]. Mathematical Problems in Engineering,2020,2020: 1-14.
    [11] 于海威. 形状记忆合金在变厚度机翼上的新型应用[J]. 内燃机与配件,2018(17): 234-235. doi: 10.3969/j.issn.1674-957X.2018.17.118

    YU Haiwei. New application of shape memory alloy in variable thickness wing[J]. Internal Combustion Engine & Parts,2018(17): 234-235. (in Chinese) doi: 10.3969/j.issn.1674-957X.2018.17.118
    [12] 李扬. 变厚度机翼驱动系统研究[D]. 南京: 南京航空航天大学, 2012.

    LI Yang. Research on actuation system of a variable-thickness wing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
    [13] 陈钱,白鹏,尹维龙,等. 飞机外翼段大尺度剪切式变后掠设计与分析[J]. 空气动力学学报,2013,31(1): 40-46.

    CHEN Qian,BAI Peng,YIN Weilong,et al. Design and analysis of a variable-sweep morphing aircraft with outboard wing section large-scale shearing[J]. Acta Aerodynamica Sinica,2013,31(1): 40-46. (in Chinese)
    [14] 张耀, 俞公沼. 航空科学技术的发展[M]. 北京: 航空工业出版社, 2007.
    [15] GOMEZ J C,GARCIA E. Morphing unmanned aerial vehicles[J]. Smart Materials and Structures,2011,20(10): 103001. doi: 10.1088/0964-1726/20/10/103001
    [16] JOO J J, SANDERS B, JOHNSON T, et al. Optimal actuator location within a morphing wing scissor mechanism configuration[C]//Smart Structures and Materials 2006: Modeling, Signal Processing, and Control, San Diego, California, US: SPIE, 2006: 24-35.
    [17] JOHNSON T,FRECKER M,ABDALLA M,et al. Nonlinear analysis and optimization of diamond cell morphing wings[J]. Journal of Intelligent Material Systems and Structures,2009,20(7): 815-824. doi: 10.1177/1045389X08098098
    [18] MOOSAVIAN A. Variable geometry wing-box: toward a robotic morphing wing[D]. Ryerson: Ryerson University, 2014.
    [19] 王礼佳. 无人机变形翼的方案设计与仿真分析[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    WANG Lijia. The scheme design of the uav morphing wing and simulation analysis[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese)
    [20] SHEN X,XU L,LI Q. Motion/Force constraint indices of redundantly actuated parallel manipulators with over constraints[J]. Mechanism and Machine Theory,2021,165: 104427. doi: 10.1016/j.mechmachtheory.2021.104427
    [21] 刘文兰. 空间多闭环过约束机构受力机理分析[D]. 河北 秦皇岛: 燕山大学, 2018.

    LIU Wenlan. Force mechanism analysis of spatial multi-loop mechanisms with overconstrains[D]. Qinhuangdao Hebei: Yanshan University, 2018. (in Chinese)
  • 加载中
图(26) / 表(2)
计量
  • 文章访问数:  143
  • HTML浏览量:  28
  • PDF量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-15
  • 网络出版日期:  2023-08-28

目录

    /

    返回文章
    返回