留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电动膨胀循环变推力液体火箭发动机推力控制方案

梁涛 胡润生 李清廉 崔朋 宋杰 陈兰伟

梁涛, 胡润生, 李清廉, 等. 电动膨胀循环变推力液体火箭发动机推力控制方案[J]. 航空动力学报, 2023, 38(12):2957-2972 doi: 10.13224/j.cnki.jasp.20210377
引用本文: 梁涛, 胡润生, 李清廉, 等. 电动膨胀循环变推力液体火箭发动机推力控制方案[J]. 航空动力学报, 2023, 38(12):2957-2972 doi: 10.13224/j.cnki.jasp.20210377
LIANG Tao, HU Runsheng, LI Qinglian, et al. Thrust control scheme for electric expander cycle of variable thrust liquid rocket engine[J]. Journal of Aerospace Power, 2023, 38(12):2957-2972 doi: 10.13224/j.cnki.jasp.20210377
Citation: LIANG Tao, HU Runsheng, LI Qinglian, et al. Thrust control scheme for electric expander cycle of variable thrust liquid rocket engine[J]. Journal of Aerospace Power, 2023, 38(12):2957-2972 doi: 10.13224/j.cnki.jasp.20210377

电动膨胀循环变推力液体火箭发动机推力控制方案

doi: 10.13224/j.cnki.jasp.20210377
基金项目: 科技大学自主科研项目
详细信息
    作者简介:

    梁涛(1996-),男,硕士生,研究领域为推进系统动力学与控制。E-mail:cooper_nudt@163.com

    通讯作者:

    李清廉(1974-),男,教授,博士,研究领域为航空宇航推进理论与工程。E-mail:peakdreamer@163.com

  • 中图分类号: V433;V434

Thrust control scheme for electric expander cycle of variable thrust liquid rocket engine

  • 摘要:

    以电动膨胀循环变推力液体火箭发动机为研究对象,设计了一种适用于电动膨胀循环发动机的推力闭环控制方案,其次基于AMESim平台建立了控制系统仿真模型,验证了重要部组件模型的准确性,并基于电动机泵和涡轮泵动力学模型对PID控制器进行了参数整定,最后着重针对推力调节的阶跃信号和斜坡信号开展了控制仿真。结果表明:在推力变比5∶1全工况范围内,双PI控制器适用于电动膨胀循环发动机推力调节控制,系统不存在稳态误差,但是调节过程存在波动;针对调节过程而言,双PI控制器控制信号的比例输出振荡是控制目标波动的主因,而积分输出造成了控制目标的稳态误差;相比阶跃信号调节,双PI控制器跟踪斜坡信号的效果更好,因此实际使用中,应尽量考虑斜坡信号进行推力调节。

     

  • 图 1  开环控制和闭环控制结构

    Figure 1.  Open loop control and close loop control

    图 2  电动膨胀循环发动机系统方案

    Figure 2.  Electric expander cycle engine system scheme

    图 3  电动机物理示意图及其等效电路图

    Figure 3.  Physical schematic of motor and its equivalent circuit

    图 4  冷却通道分段模型

    Figure 4.  Sectional model of cooling channels

    图 5  矩形冷却通道

    Figure 5.  Rectangular cooling channels

    图 6  PID控制系统框架

    Figure 6.  Framework of PID control system

    图 7  PID控制器原理图

    Figure 7.  Principles of PID controller

    图 8  电动膨胀循环控制系统仿真模型

    Figure 8.  Simulation model of electric expander cycle control system

    图 9  泵动力学模型验证

    Figure 9.  Verification of pumps’s dynamic model

    图 10  不同整定参数下系统的单位阶跃响应曲线

    Figure 10.  Unit step response curve of the system under different tuning parameters

    图 11  不同整定参数系统的单位阶跃响应曲线

    Figure 11.  System step response under different parameters

    图 12  开环和闭环控制下测量室压和目标室压随时间变化曲线

    Figure 12.  Measured and target chamber pressure under open and closed loop control vs. time

    图 13  开环和闭环控制下测量混合比和目标混合比随时间变化曲线

    Figure 13.  Measured and target mixture ratio under open and closed loop control vs. time

    图 14  推力室入口推进剂流量随时间的变化曲线

    Figure 14.  Chamber inlet propellants mass flow rates vs. time

    图 15  燃料流量控制器限幅和不限幅输出信号随时间变化曲线

    Figure 15.  Saturation signal and unlimited signal of fuel flow controller vs. time

    图 16  冷却通道各分段气体体积分数随时间变化趋势

    Figure 16.  Gas volume fraction in section of cooling channels vs. time

    图 17  燃料泵后压力随时间变化趋势

    Figure 17.  Pressure behind fuel pump vs. time

    图 18  氧流量控制器限幅和不限幅输出信号随时间变化趋势

    Figure 18.  Saturation signal and unlimited signal of oxidizer flow controller vs. time

    图 19  斜坡信号下目标室压及测量室压值随时间变化曲线

    Figure 19.  Measured and target chamber pressure under ramp loop control vs. time

    图 20  推力室入口推进剂流量随时间变化曲线

    Figure 20.  Propellants mass flow rates of chamber vs. time

    图 21  燃料流量控制器限幅和不限幅控制信号随时间变化曲线

    Figure 21.  Saturation signal and unlimited signal of fuel flow controller vs. time

    图 22  燃料流量不限幅控制信号的比例和积分输出随时间变化曲线

    Figure 22.  Proportional and integral output of unlimited control signal of fuel flow vs. time

    图 23  目标混合比与测量混合比随时间的变化曲线

    Figure 23.  Measured and target mixture ratio vs. time

    图 24  斜坡信号下氧流量限幅和不限幅控制信号随时间的变化曲线

    Figure 24.  Saturation and unlimited signal of oxidizer flow controller under ramp signal vs. time

    图 25  斜坡信号下氧流量控制信号比例和积分输出随时间变化曲线

    Figure 25.  Proportional and integral output of unlimited control signal under ramp signal vs. time for oxygen mass flow rate

    图 26  混合信号下目标室压及测量室压值随时间变化曲线

    Figure 26.  Measured and target chamber pressure under mixed signal vs. time

    图 27  混合信号下目标混合比及测量混合比随时间的变化曲线

    Figure 27.  Measured and target mixture ratio under mixed signal vs. time

    表  1  技术指标

    Table  1.   System technical metrics

    输入参数数值 输入参数数值
    Fmax/kN20 Mratio3.20
    Tratio5∶1Isp/s360
    pcmax/MPa3.00oxmax/(kg/s)4.32
    ɛ220fmax/(kg/s)1.35
    下载: 导出CSV

    表  2  部组件关键参数

    Table  2.   Key parameters of components

    参数数值
    燃料储箱和氧储箱压力/MPa0.40
    氧储箱温度/K90
    燃料储箱温度/K111
    燃料管路内径/mm24
    氧管路内径/mm28
    推力室喉部直径/mm64.6
    燃烧室直径/mm130
    燃烧室特征长度/m1
    喷管转折处型面角/(º)20
    喷管出口扩张半角/(º)10
    下载: 导出CSV

    表  3  电动机参数

    Table  3.   Motor parameters

    参数数值
    输入电压Us/V0~540
    参考电压Usr/V340
    绕组电阻Rso0.6
    绕组修正系数σr/K−10.1
    绕组电导率Ls/(S/m)0.012
    反电动势和转矩减小常数Krt0 /(V·s/A/rad)0.0018
    反电动势和转矩系数修正系数σk/K−10.1
    下载: 导出CSV

    表  4  离心泵组件参数

    Table  4.   Centrifugal pump components parameters

    部组件参数氧路燃料路
    转子转动惯量J/(kg·m20.0010.01
    流体惯量If/104(kg·m422
    参考压头Hr/m3751722
    参考体积流量Qr /(m3/s)0.003980.00375
    参考转速Nr /(r/min)650012500
    参考效率ηr0.560.50
    下载: 导出CSV

    表  5  涡轮组件参数

    Table  5.   Turbine components parameters

    部组件参数数值
    涡轮直径Dtur/m0.2
    并联阀最大横截面积/mm2452.3
    参考开度0.208
    下载: 导出CSV

    表  6  推力室参数

    Table  6.   Thrust chamber parameters

    部组件参数氧路燃料路
    喷注器节流孔最大横截面积/mm2706.5314.0
    燃烧室体积Vc /L3.27
    长度/mm150
    喷管喷管出口到喉部距离/m1.26
    燃烧室入口到喉部距离/mm79.0
    冷却通道起始位置
    喷管半径/mm
    72.0
    内壁厚δw/mm1
    外壁厚δwe/mm2
    下载: 导出CSV

    表  7  冷却通道参数

    Table  7.   Cooling channel parameters

    参数第1段第2段第3段第4段第5段第6段
    长度Li/mm75.075.039.039.028.028.0
    矩形通高度Hi/mm3.03.03.03.03.03.0
    矩形通道数ntube808080808080
    肋宽/mm111111
    起点喷半径rai/mm65.065.065.056.032.350.0
    终点喷半径rbi/mm65.065.056.032.350.072.0
    起点矩形通道宽度wai/mm4.14.14.13.41.52.9
    终点矩形通道宽度wai/mm4.14.13.41.52.94.7
    节流孔压降系数888888
    下载: 导出CSV

    表  8  燃烧室动力学模型验证

    Table  8.   Verification of combustor’s dynamic model

    室压/MPa液氧/甲烷流量/(kg/s) 温度/K
    试验结果仿真结果 RPA结果仿真结果
    3.004.243/1.3264.141/1.29434163442
    1.502.183/0.6822.053/0.64233293457
    下载: 导出CSV

    表  9  不同控制器参数系统的性能指标

    Table  9.   System performance under different controller parameters

    参数超调量/%调整时间/s稳态误差
    Kp=201, Ki=867000.0500
    Kp =305, Ki=1175000.0330
    Kp =474, Ki=175605.40.0370
    Kp=555, Ki=2386011.50.0340
    下载: 导出CSV

    表  10  不同控制器参数系统的性能指标

    Table  10.   System performance under different controller parameters

    参数超调量/%调整时间/s稳态误差
    Kp=−0.163, Ki=−87.200.00230
    Kp =−0.267, Ki =−130.400.00120
    Kp =−0.408, Ki =−231.16.10.00160
    Kp =−0.511, Ki =−316.111.50.001340
    下载: 导出CSV
  • [1] 佟红宇. 变推力推进系统的动态特性仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    TONG Hongyu. Simulation research on dynamic characteristics of variable thrust propulsion system[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
    [2] 崔朋,李清廉,成鹏,等. 并联式电热协同增压变推力火箭发动机方案研究[J]. 载人航天,2020,26(6): 702-709. doi: 10.3969/j.issn.1674-5825.2020.06.005

    CUI Peng,LI Qinglian,CHENG Peng,et al. Study on scheme of variable thrust rocket engine with parallel electrothermal co-pressurization[J]. Manned Spaceflight,2020,26(6): 702-709. (in Chinese) doi: 10.3969/j.issn.1674-5825.2020.06.005
    [3] CHENG Peng,LI Qinglian,CHEN Huiyuan,et al. Study on the dynamic response of a pressure swirl injector to ramp variation of mass flow rate[J]. Acta Astronautica,2018,152: 449-457. doi: 10.1016/j.actaastro.2018.08.049
    [4] CUI Peng,XU Wanwu,LI Qinglian. Numerical simulation of divergent rocket-based-combined-cycle performances under the flight condition of Mach 3[J]. Acta Astronautica,2018,142: 162-169. doi: 10.1016/j.actaastro.2017.10.034
    [5] DOHERTY M, GABY J, SALERNO L, et al. Cryogenic fluid management technology for moon and Mars missions[R]. AIAA 2009-6532, 2009.
    [6] DONG Zeyu,SUN Mingbo,WANG Zhenguo,et al. Survey on key techniques of rocket-based combined-cycle engine in ejector mode[J]. Acta Astronautica,2019,164: 51-68. doi: 10.1016/j.actaastro.2019.07.016
    [7] DRESSLER G. Summary of deep throttling rocket engines with emphasis on apollo LMDE[R]. AIAA 2006-5220, 2006.
    [8] GILROY R, SACKHEIM R. The lunar module descent engine-a historical summary[R]. AIAA 1989-2385, 1989.
    [9] ZHANG Rongjun,LAN Xiaohui,CHEN Wei,et al. The development of 7 500 N variable thrust engine for Chang’E-3[J]. Scientia Sinica Technologica,2014,44(6): 569-575. doi: 10.1360/092014-52
    [10] 翟一帆. 膨胀循环发动机推力调节过程动态仿真研究[D]. 北京: 中国航天科技集团公司, 2017.

    ZHAI Yifan. Dynamic simulatoin study on throttling process of expander cycle rocket engine[D]. Beijing: China Aerospace Science and Technology Corporation, 2017. (in Chinese)
    [11] BRADLEY M, BRADLEY M. SSME off-nominal low power level operation[R]. AIAA 1997-2685, 1997.
    [12] SEKITA R, YASUI M, WARASHINA S. The LE-5 series development, approach to higher thrust, higher reliability and greater flexibility[R]. AIAA 2000-3453, 2000.
    [13] RACHUK V, GONCHAROV N, MARTINYENKO, et al. Evolution of the RD-0120 for future launch systems[R]. AIAA 96-3004, 1996.
    [14] MELCHER J C, MOREHEAD R L. Combustion stability characteristics of the project morpheus liquid oxygen/liquid methane main engine[R]. AIAA 2014-3681, 2014.
    [15] 刘洋,付本帅,杨建刚,等. 电动泵压式液体火箭发动机系统建模与仿真[J]. 载人航天,2019,25(1): 107-115. doi: 10.3969/j.issn.1674-5825.2019.01.016

    LIU Yang,FU Benshuai,YANG Jiangang,et al. System modeling and simulation of electric pump feed liquid propellant rocket engine[J]. Manned Spaceflight,2019,25(1): 107-115. (in Chinese) doi: 10.3969/j.issn.1674-5825.2019.01.016
    [16] 徐柯杰,郭迎清,赵万里. 某型大推力氢氧补燃循环发动机建模仿真[J]. 航空计算技术,2021,51(2): 36-40. doi: 10.3969/j.issn.1671-654X.2021.02.009

    XU Kejie,GUO Yingqing,ZHAO Wanli. Modeling and simulation of a large thrust hydrogen-oxygen supplementary combustion cycle engine[J]. Aeronautical Computing Technique,2021,51(2): 36-40. (in Chinese) doi: 10.3969/j.issn.1671-654X.2021.02.009
    [17] 艾春安. 双调变推力液体火箭发动机系统理论线性模型及数字最优补偿控制[D]. 长沙: 国防科学技术大学, 1987.

    AI Chunan. Theoretical linear model and digital optimal compensation control of double adjustable thrust liquid rocket engine system [D]. Changsha: National University of Defense Technology, 1987. (in Chinese)
    [18] 韩泉东. 空间变推力液体火箭发动机流量调节及燃烧过程仿真研究[D]. 长沙: 国防科学技术大学, 2006.

    HAN Quandong. Numerical study on flow control and combustion process of variable thrust liquid propellant space rocket engine[D]. Changsha: National University of Defense Technology, 2006. (in Chinese)
    [19] 翟一帆,吴瑾清,崔荣军,等. 氢氧膨胀循环发动机推力调节技术研究[J]. 导弹与航天运载技术,2020(4): 51-56,62.

    ZHAI Yifan,WU Jinqing,CUI Rongjun,et al. The research of throttling technique on LH2/LO2 expander cycle rocket engine[J]. Missiles and Space Vehicles,2020(4): 51-56,62. (in Chinese)
    [20] 张万旋,翟一帆. 膨胀循环发动机全局快速非奇异终端滑模控制[J]. 导弹与航天运载技术,2019(6): 47-51.

    ZHANG Wanxuan,ZHAI Yifan. Global fast non-singular terminal sliding mode controller for expander cycle rocket engine[J]. Missiles and Space Vehicles,2019(6): 47-51. (in Chinese)
    [21] 薛薇,胡慧,武小平. 大推力氢氧补燃发动机推力闭环控制设计[J]. 计算机测量与控制,2019,27(6): 90-94. doi: 10.16526/j.cnki.11-4762/tp.2019.06.020

    XUE Wei,HU Hui,WU Xiaoping. Thrust closed-loop control of the large scale expendable liquid rocket propulsion[J]. Computer Measurement & Control,2019,27(6): 90-94. (in Chinese) doi: 10.16526/j.cnki.11-4762/tp.2019.06.020
    [22] HU Runsheng,FERRARI R M G,CHEN Zhenyu,et al. System analysis and controller design for the electric pump of a deep-throttling rocket engine[J]. Aerospace Science and Technology,2021,114: 106729. doi: 10.1016/j.ast.2021.106729
    [23] LIANG Tao,SONG Jie,LI Qinglian,et al. System scheme design of electric expander cycle for LOX/LCH4 variable thrust liquid rocket engine[J]. Acta Astronautica,2021,186: 451-464. doi: 10.1016/j.actaastro.2021.06.015
    [24] 刘彦杰,马武军,吴建军,等. C/SiC陶瓷基复合材料燃烧室壁厚设计与验证[J]. 国防科技大学学报,2012,34(6): 121-124. doi: 10.3969/j.issn.1001-2486.2012.06.021

    LIU Yanjie,MA Wujun,WU Jianjun,et al. Wall thickness design of combustion chamber for C/SiC composites rocket engine[J]. Journal of National University of Defense Technology,2012,34(6): 121-124. (in Chinese) doi: 10.3969/j.issn.1001-2486.2012.06.021
    [25] 王娜,李海庆,徐方涛,等. 双组元液体火箭发动机推力室材料研究进展[J]. 宇航材料工艺,2019,49(3): 1-8. doi: 10.12044/j.issn.1007-2330.2019.03.001

    WANG Na,LI Haiqing,XU Fangtao,et al. Recent development of advanced materials for liquid rocket thruster chambers[J]. Aerospace Materials & Technology,2019,49(3): 1-8. (in Chinese) doi: 10.12044/j.issn.1007-2330.2019.03.001
    [26] 赵海龙,张成印,曹红娟,等. 30 kN上面级液氧甲烷发动机方案[J]. 火箭推进,2021,47(1): 13-20.

    ZHAO Hailong,ZHANG Chengyin,CAO Hongjuan,et al. System scheme of a 30 kN upstage LOX/methane engine[J]. Journal of Rocket Propulsion,2021,47(1): 13-20. (in Chinese)
    [27] 崔朋,宋杰,李清廉,等. 电动泵压式液氧煤油变推力火箭发动机动力学建模与仿真分析: Part Ⅰ 单点工况分析[J]. 航空学报,2022,43(1): 248-262. doi: 10.7527/j.issn.1000-6893.2022.1.hkxb202201018

    CUI Peng,SONG Jie,LI Qinglian,et al. Dynamic modeling and simulation analysis of LOX/RP1 variable thrust engines using motor pump: Part Ⅰ single condition analysis[J]. Acta Aeronautica et Astronautica Sinica,2022,43(1): 248-262. (in Chinese) doi: 10.7527/j.issn.1000-6893.2022.1.hkxb202201018
    [28] 曹泰岳. 火箭发动机动力学[M]. 长沙: 国防科技大学出版社, 2004.
    [29] CASIANO M J,HULKA J R,YANG V. Liquid-propellant rocket engine throttling: a comprehensive review[J]. Journal of Propulsion and Power,2010,26(5): 897-923. doi: 10.2514/1.49791
    [30] PÉREZ-ROCA S,MARZAT J,PIET-LAHANIER H,et al. A survey of automatic control methods for liquid-propellant rocket engines[J]. Progress in Aerospace Sciences,2019,107: 63-84. doi: 10.1016/j.paerosci.2019.03.002
    [31] 南英,陈昊翔,杨毅,等. 现代主要控制方法的研究现状及展望[J]. 南京航空航天大学学报,2015,47(6): 798-810. doi: 10.16356/j.1005-2615.2015.06.003

    NAN Ying,CHEN Haoxiang,YANG Yi,et al. Primary methodologies of modern control: status and prospect[J]. Journal of Nanjing University of Aeronautics & Astronautics,2015,47(6): 798-810. (in Chinese) doi: 10.16356/j.1005-2615.2015.06.003
    [32] 刘金琨. 先进PID控制MATLAB仿真[M]. 4版. 北京: 电子工业出版社, 2016.
    [33] CUI Peng,LI Qinglian,CHENG Peng,et al. System scheme design for LOX/LCH4 variable thrust liquid rocket engines using motor pump[J]. Acta Astronautica,2020,171: 139-150. doi: 10.1016/j.actaastro.2020.03.002
  • 加载中
图(27) / 表(10)
计量
  • 文章访问数:  68
  • HTML浏览量:  26
  • PDF量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-18
  • 网络出版日期:  2023-08-31

目录

    /

    返回文章
    返回