Thrust control scheme for electric expander cycle of variable thrust liquid rocket engine
-
摘要:
以电动膨胀循环变推力液体火箭发动机为研究对象,设计了一种适用于电动膨胀循环发动机的推力闭环控制方案,其次基于AMESim平台建立了控制系统仿真模型,验证了重要部组件模型的准确性,并基于电动机泵和涡轮泵动力学模型对PID控制器进行了参数整定,最后着重针对推力调节的阶跃信号和斜坡信号开展了控制仿真。结果表明:在推力变比5∶1全工况范围内,双PI控制器适用于电动膨胀循环发动机推力调节控制,系统不存在稳态误差,但是调节过程存在波动;针对调节过程而言,双PI控制器控制信号的比例输出振荡是控制目标波动的主因,而积分输出造成了控制目标的稳态误差;相比阶跃信号调节,双PI控制器跟踪斜坡信号的效果更好,因此实际使用中,应尽量考虑斜坡信号进行推力调节。
Abstract:A thrust closed-loop control scheme for electric expander cycle of variable thrust liquid rocket engine was designed, and the control system simulation model was established based on AMESim platform. Besides, the simulation model of some important components was verified. Secondly, the PID (proportional-integral-derivative) controller parameters were selected based on the dynamic models of motor pump and turbopump. Finally, control simulation was carried out for the step signal and slope signal of thrust regulation. The results showed that the double PI controller was suitable for the thrust regulation control of electric expansion cycle engine within the range of thrust ratio 5∶1, and there was no steady-state error in the system, though the oscillation of thrust existed during the throttling process; secondly, for the throttling process, the proportional output oscillation of the control signal of the dual PI controller contributed much to the fluctuation of the control target, and it cannot restrain the fluctuation effectively; compared with step signal, the effect of dual PI controller tracking slope signal was better, so in practice, the slope signal should be considered for thrust throttle.
-
表 1 技术指标
Table 1. System technical metrics
输入参数 数值 输入参数 数值 Fmax/kN 20 Mratio 3.20 Tratio 5∶1 Isp/s 360 pcmax/MPa 3.00 ṁoxmax/(kg/s) 4.32 ɛ 220 ṁfmax/(kg/s) 1.35 表 2 部组件关键参数
Table 2. Key parameters of components
参数 数值 燃料储箱和氧储箱压力/MPa 0.40 氧储箱温度/K 90 燃料储箱温度/K 111 燃料管路内径/mm 24 氧管路内径/mm 28 推力室喉部直径/mm 64.6 燃烧室直径/mm 130 燃烧室特征长度/m 1 喷管转折处型面角/(º) 20 喷管出口扩张半角/(º) 10 表 3 电动机参数
Table 3. Motor parameters
参数 数值 输入电压Us/V 0~540 参考电压Usr/V 340 绕组电阻Rso/Ω 0.6 绕组修正系数σr/K−1 0.1 绕组电导率Ls/(S/m) 0.012 反电动势和转矩减小常数Krt0 /(V·s/A/rad) 0.0018 反电动势和转矩系数修正系数σk/K−1 0.1 表 4 离心泵组件参数
Table 4. Centrifugal pump components parameters
部组件 参数 氧路 燃料路 转子 转动惯量J/(kg·m2) 0.001 0.01 泵 流体惯量If/104(kg·m4) 2 2 参考压头Hr/m 375 1722 参考体积流量Qr /(m3/s) 0.00398 0.00375 参考转速Nr /(r/min) 6500 12500 参考效率ηr 0.56 0.50 表 5 涡轮组件参数
Table 5. Turbine components parameters
部组件 参数 数值 涡轮 直径Dtur/m 0.2 并联阀 最大横截面积/mm2 452.3 参考开度 0.208 表 6 推力室参数
Table 6. Thrust chamber parameters
部组件 参数 氧路 燃料路 喷注器 节流孔最大横截面积/mm2 706.5 314.0 燃烧室 体积Vc /L 3.27 长度/mm 150 喷管 喷管出口到喉部距离/m 1.26 燃烧室入口到喉部距离/mm 79.0 冷却通道起始位置
喷管半径/mm72.0 内壁厚δw/mm 1 外壁厚δwe/mm 2 表 7 冷却通道参数
Table 7. Cooling channel parameters
参数 第1段 第2段 第3段 第4段 第5段 第6段 长度Li/mm 75.0 75.0 39.0 39.0 28.0 28.0 矩形通高度Hi/mm 3.0 3.0 3.0 3.0 3.0 3.0 矩形通道数ntube 80 80 80 80 80 80 肋宽/mm 1 1 1 1 1 1 起点喷半径rai/mm 65.0 65.0 65.0 56.0 32.3 50.0 终点喷半径rbi/mm 65.0 65.0 56.0 32.3 50.0 72.0 起点矩形通道宽度wai/mm 4.1 4.1 4.1 3.4 1.5 2.9 终点矩形通道宽度wai/mm 4.1 4.1 3.4 1.5 2.9 4.7 节流孔压降系数 8 8 8 8 8 8 表 8 燃烧室动力学模型验证
Table 8. Verification of combustor’s dynamic model
室压/MPa 液氧/甲烷流量/(kg/s) 温度/K 试验结果 仿真结果 RPA结果 仿真结果 3.00 4.243/1.326 4.141/1.294 3416 3442 1.50 2.183/0.682 2.053/0.642 3329 3457 表 9 不同控制器参数系统的性能指标
Table 9. System performance under different controller parameters
参数 超调量/% 调整时间/s 稳态误差 Kp=201, Ki=8670 0 0.050 0 Kp =305, Ki=11750 0 0.033 0 Kp =474, Ki=17560 5.4 0.037 0 Kp=555, Ki=23860 11.5 0.034 0 表 10 不同控制器参数系统的性能指标
Table 10. System performance under different controller parameters
参数 超调量/% 调整时间/s 稳态误差 Kp=−0.163, Ki=−87.2 0 0.0023 0 Kp =−0.267, Ki =−130.4 0 0.0012 0 Kp =−0.408, Ki =−231.1 6.1 0.0016 0 Kp =−0.511, Ki =−316.1 11.5 0.00134 0 -
[1] 佟红宇. 变推力推进系统的动态特性仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.TONG Hongyu. Simulation research on dynamic characteristics of variable thrust propulsion system[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese) [2] 崔朋,李清廉,成鹏,等. 并联式电热协同增压变推力火箭发动机方案研究[J]. 载人航天,2020,26(6): 702-709. doi: 10.3969/j.issn.1674-5825.2020.06.005CUI Peng,LI Qinglian,CHENG Peng,et al. Study on scheme of variable thrust rocket engine with parallel electrothermal co-pressurization[J]. Manned Spaceflight,2020,26(6): 702-709. (in Chinese) doi: 10.3969/j.issn.1674-5825.2020.06.005 [3] CHENG Peng,LI Qinglian,CHEN Huiyuan,et al. Study on the dynamic response of a pressure swirl injector to ramp variation of mass flow rate[J]. Acta Astronautica,2018,152: 449-457. doi: 10.1016/j.actaastro.2018.08.049 [4] CUI Peng,XU Wanwu,LI Qinglian. Numerical simulation of divergent rocket-based-combined-cycle performances under the flight condition of Mach 3[J]. Acta Astronautica,2018,142: 162-169. doi: 10.1016/j.actaastro.2017.10.034 [5] DOHERTY M, GABY J, SALERNO L, et al. Cryogenic fluid management technology for moon and Mars missions[R]. AIAA 2009-6532, 2009. [6] DONG Zeyu,SUN Mingbo,WANG Zhenguo,et al. Survey on key techniques of rocket-based combined-cycle engine in ejector mode[J]. Acta Astronautica,2019,164: 51-68. doi: 10.1016/j.actaastro.2019.07.016 [7] DRESSLER G. Summary of deep throttling rocket engines with emphasis on apollo LMDE[R]. AIAA 2006-5220, 2006. [8] GILROY R, SACKHEIM R. The lunar module descent engine-a historical summary[R]. AIAA 1989-2385, 1989. [9] ZHANG Rongjun,LAN Xiaohui,CHEN Wei,et al. The development of 7 500 N variable thrust engine for Chang’E-3[J]. Scientia Sinica Technologica,2014,44(6): 569-575. doi: 10.1360/092014-52 [10] 翟一帆. 膨胀循环发动机推力调节过程动态仿真研究[D]. 北京: 中国航天科技集团公司, 2017.ZHAI Yifan. Dynamic simulatoin study on throttling process of expander cycle rocket engine[D]. Beijing: China Aerospace Science and Technology Corporation, 2017. (in Chinese) [11] BRADLEY M, BRADLEY M. SSME off-nominal low power level operation[R]. AIAA 1997-2685, 1997. [12] SEKITA R, YASUI M, WARASHINA S. The LE-5 series development, approach to higher thrust, higher reliability and greater flexibility[R]. AIAA 2000-3453, 2000. [13] RACHUK V, GONCHAROV N, MARTINYENKO, et al. Evolution of the RD-0120 for future launch systems[R]. AIAA 96-3004, 1996. [14] MELCHER J C, MOREHEAD R L. Combustion stability characteristics of the project morpheus liquid oxygen/liquid methane main engine[R]. AIAA 2014-3681, 2014. [15] 刘洋,付本帅,杨建刚,等. 电动泵压式液体火箭发动机系统建模与仿真[J]. 载人航天,2019,25(1): 107-115. doi: 10.3969/j.issn.1674-5825.2019.01.016LIU Yang,FU Benshuai,YANG Jiangang,et al. System modeling and simulation of electric pump feed liquid propellant rocket engine[J]. Manned Spaceflight,2019,25(1): 107-115. (in Chinese) doi: 10.3969/j.issn.1674-5825.2019.01.016 [16] 徐柯杰,郭迎清,赵万里. 某型大推力氢氧补燃循环发动机建模仿真[J]. 航空计算技术,2021,51(2): 36-40. doi: 10.3969/j.issn.1671-654X.2021.02.009XU Kejie,GUO Yingqing,ZHAO Wanli. Modeling and simulation of a large thrust hydrogen-oxygen supplementary combustion cycle engine[J]. Aeronautical Computing Technique,2021,51(2): 36-40. (in Chinese) doi: 10.3969/j.issn.1671-654X.2021.02.009 [17] 艾春安. 双调变推力液体火箭发动机系统理论线性模型及数字最优补偿控制[D]. 长沙: 国防科学技术大学, 1987.AI Chunan. Theoretical linear model and digital optimal compensation control of double adjustable thrust liquid rocket engine system [D]. Changsha: National University of Defense Technology, 1987. (in Chinese) [18] 韩泉东. 空间变推力液体火箭发动机流量调节及燃烧过程仿真研究[D]. 长沙: 国防科学技术大学, 2006.HAN Quandong. Numerical study on flow control and combustion process of variable thrust liquid propellant space rocket engine[D]. Changsha: National University of Defense Technology, 2006. (in Chinese) [19] 翟一帆,吴瑾清,崔荣军,等. 氢氧膨胀循环发动机推力调节技术研究[J]. 导弹与航天运载技术,2020(4): 51-56,62.ZHAI Yifan,WU Jinqing,CUI Rongjun,et al. The research of throttling technique on LH2/LO2 expander cycle rocket engine[J]. Missiles and Space Vehicles,2020(4): 51-56,62. (in Chinese) [20] 张万旋,翟一帆. 膨胀循环发动机全局快速非奇异终端滑模控制[J]. 导弹与航天运载技术,2019(6): 47-51.ZHANG Wanxuan,ZHAI Yifan. Global fast non-singular terminal sliding mode controller for expander cycle rocket engine[J]. Missiles and Space Vehicles,2019(6): 47-51. (in Chinese) [21] 薛薇,胡慧,武小平. 大推力氢氧补燃发动机推力闭环控制设计[J]. 计算机测量与控制,2019,27(6): 90-94. doi: 10.16526/j.cnki.11-4762/tp.2019.06.020XUE Wei,HU Hui,WU Xiaoping. Thrust closed-loop control of the large scale expendable liquid rocket propulsion[J]. Computer Measurement & Control,2019,27(6): 90-94. (in Chinese) doi: 10.16526/j.cnki.11-4762/tp.2019.06.020 [22] HU Runsheng,FERRARI R M G,CHEN Zhenyu,et al. System analysis and controller design for the electric pump of a deep-throttling rocket engine[J]. Aerospace Science and Technology,2021,114: 106729. doi: 10.1016/j.ast.2021.106729 [23] LIANG Tao,SONG Jie,LI Qinglian,et al. System scheme design of electric expander cycle for LOX/LCH4 variable thrust liquid rocket engine[J]. Acta Astronautica,2021,186: 451-464. doi: 10.1016/j.actaastro.2021.06.015 [24] 刘彦杰,马武军,吴建军,等. C/SiC陶瓷基复合材料燃烧室壁厚设计与验证[J]. 国防科技大学学报,2012,34(6): 121-124. doi: 10.3969/j.issn.1001-2486.2012.06.021LIU Yanjie,MA Wujun,WU Jianjun,et al. Wall thickness design of combustion chamber for C/SiC composites rocket engine[J]. Journal of National University of Defense Technology,2012,34(6): 121-124. (in Chinese) doi: 10.3969/j.issn.1001-2486.2012.06.021 [25] 王娜,李海庆,徐方涛,等. 双组元液体火箭发动机推力室材料研究进展[J]. 宇航材料工艺,2019,49(3): 1-8. doi: 10.12044/j.issn.1007-2330.2019.03.001WANG Na,LI Haiqing,XU Fangtao,et al. Recent development of advanced materials for liquid rocket thruster chambers[J]. Aerospace Materials & Technology,2019,49(3): 1-8. (in Chinese) doi: 10.12044/j.issn.1007-2330.2019.03.001 [26] 赵海龙,张成印,曹红娟,等. 30 kN上面级液氧甲烷发动机方案[J]. 火箭推进,2021,47(1): 13-20.ZHAO Hailong,ZHANG Chengyin,CAO Hongjuan,et al. System scheme of a 30 kN upstage LOX/methane engine[J]. Journal of Rocket Propulsion,2021,47(1): 13-20. (in Chinese) [27] 崔朋,宋杰,李清廉,等. 电动泵压式液氧煤油变推力火箭发动机动力学建模与仿真分析: Part Ⅰ 单点工况分析[J]. 航空学报,2022,43(1): 248-262. doi: 10.7527/j.issn.1000-6893.2022.1.hkxb202201018CUI Peng,SONG Jie,LI Qinglian,et al. Dynamic modeling and simulation analysis of LOX/RP1 variable thrust engines using motor pump: Part Ⅰ single condition analysis[J]. Acta Aeronautica et Astronautica Sinica,2022,43(1): 248-262. (in Chinese) doi: 10.7527/j.issn.1000-6893.2022.1.hkxb202201018 [28] 曹泰岳. 火箭发动机动力学[M]. 长沙: 国防科技大学出版社, 2004. [29] CASIANO M J,HULKA J R,YANG V. Liquid-propellant rocket engine throttling: a comprehensive review[J]. Journal of Propulsion and Power,2010,26(5): 897-923. doi: 10.2514/1.49791 [30] PÉREZ-ROCA S,MARZAT J,PIET-LAHANIER H,et al. A survey of automatic control methods for liquid-propellant rocket engines[J]. Progress in Aerospace Sciences,2019,107: 63-84. doi: 10.1016/j.paerosci.2019.03.002 [31] 南英,陈昊翔,杨毅,等. 现代主要控制方法的研究现状及展望[J]. 南京航空航天大学学报,2015,47(6): 798-810. doi: 10.16356/j.1005-2615.2015.06.003NAN Ying,CHEN Haoxiang,YANG Yi,et al. Primary methodologies of modern control: status and prospect[J]. Journal of Nanjing University of Aeronautics & Astronautics,2015,47(6): 798-810. (in Chinese) doi: 10.16356/j.1005-2615.2015.06.003 [32] 刘金琨. 先进PID控制MATLAB仿真[M]. 4版. 北京: 电子工业出版社, 2016. [33] CUI Peng,LI Qinglian,CHENG Peng,et al. System scheme design for LOX/LCH4 variable thrust liquid rocket engines using motor pump[J]. Acta Astronautica,2020,171: 139-150. doi: 10.1016/j.actaastro.2020.03.002 -