留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温液氧过冷方案对比分析与试验研究

孙强 马原 高炎 高强 厉彦忠

孙强, 马原, 高炎, 等. 低温液氧过冷方案对比分析与试验研究[J]. 航空动力学报, 2023, 38(12):2905-2911 doi: 10.13224/j.cnki.jasp.20210382
引用本文: 孙强, 马原, 高炎, 等. 低温液氧过冷方案对比分析与试验研究[J]. 航空动力学报, 2023, 38(12):2905-2911 doi: 10.13224/j.cnki.jasp.20210382
SUN Qiang, MA Yuan, GAO Yan, et al. Comparative investigation and experimental verification on depth subcooling schemes of cryogenic liquid oxygen[J]. Journal of Aerospace Power, 2023, 38(12):2905-2911 doi: 10.13224/j.cnki.jasp.20210382
Citation: SUN Qiang, MA Yuan, GAO Yan, et al. Comparative investigation and experimental verification on depth subcooling schemes of cryogenic liquid oxygen[J]. Journal of Aerospace Power, 2023, 38(12):2905-2911 doi: 10.13224/j.cnki.jasp.20210382

低温液氧过冷方案对比分析与试验研究

doi: 10.13224/j.cnki.jasp.20210382
基金项目: 航天低温推进剂技术国家重点实验室基金(SKLTSCP1914,SKLTSCP1905); 国家自然科学基金(51906194);中国博士后科学基金(2019M663701)
详细信息
    作者简介:

    孙强(1997-),男,硕士生,主要从事航天低温专业领域研究

    通讯作者:

    厉彦忠(1958-),男,教授、博士生导师,博士,主要从事低温专业领域研究。E-mail:yzli-epe@mail.xjtu.edu.cn

  • 中图分类号: V511+.6

Comparative investigation and experimental verification on depth subcooling schemes of cryogenic liquid oxygen

  • 摘要:

    从燃料密度、显冷量和贮箱增压压力等方面阐述了采用过冷液氧推进剂的性能优势。以获取66 K过冷液氧为目标,从低温工质消耗、功率消耗、系统复杂性和安全性等多个方面对液氧抽空减压、负压液氮浴换热和氦制冷循环3种过冷方案进行了定量与定性对比。针对液氮浴过冷技术进一步对比了单级与两级过冷方案,最终建议采用常压+负压两级液氮浴过冷方案获取66 K深度过冷液氧,并基于该方案搭建了半工业级液氧深度过冷验证平台,成功将液氮过冷至66 K以下。试验表明在0~3 L/s的液氧流量范围内,由于管道漏热,液氧过冷加注过程中其温度随着流量增大而降低。本试验验证了两级液氮浴过冷方案的可行性,为低温火箭发射场推进剂加注系统升级提供了理论及技术参考。

     

  • 图 1  过冷液氧密度及单位体积显冷量变化

    Figure 1.  Variation of density and apparent cooling capacity per unit volume of subcooled liquid oxygen

    图 2  推进剂贮箱增压压力变化

    Figure 2.  Variation of pressurization pressure in propellant tank

    图 3  液氧贮箱所需增压气体随液氧温度变化

    Figure 3.  Variation of required pressurization gas with liquid oxygen temperature for the liquid oxygen tank

    图 4  两级过冷示意图

    Figure 4.  Schematic of the two-stage subcooling

    图 5  低温液氧过冷试验系统示意图

    Figure 5.  Experimental system schematic of cryogenic liquid oxygen subcooling

    图 6  液氮浴抽空温度及压力变化

    Figure 6.  Variation of temperature and pressure during evacuation of liquid nitrogen bath

    图 7  液氧过冷试验温度及流量变化

    Figure 7.  Variation of temperature and flow rate duringliquid oxygen subcooling test

    图 8  不同流量下的过冷液氧温度

    Figure 8.  Temperature of subcooled liquid oxygen at different flow rates

    表  1  66 K液氧获取方案对比

    Table  1.   Comparison of acquisition schemes for 66 K liquid oxygen

    过冷方案耗氮量抽氧量与
    液氧质量比/%
    单位液氧消耗
    压缩功/(MJ/m3
    真空泵部分设备
    常沸点液氮消耗量
    与液氧质量比/%
    过冷液氮消耗量
    与液氧质量比/%
    真空泵
    前后压比
    单位液氧消耗
    泵功/(MJ/m3
    液氧抽空18.8935.231.7液氧真空泵
    承压抽空罐
    液氮浴过冷20.416.944.57液氮真空泵
    负压浴式换热器
    氦循环过冷4.0792.9氦循环系统
    下载: 导出CSV

    表  2  单级液氮过冷与两级液氮过冷方案对比

    Table  2.   Comparison between single-stage and two-stage liquid nitrogen subcooling schemes

    过冷
    方案
    耗氮量耗功量
    常沸点液氮消耗量
    与液氧质量比/%
    过冷液氮消耗量
    与液氧质量比/%
    单位液氧消耗
    泵功/(MJ/m3
    单级
    过冷
    20.41 4.57
    两级
    过冷
    8.4712.542.83
    下载: 导出CSV

    表  3  换热器参数

    Table  3.   Parameters of heat exchangers

    换热器直径/mm高度/mm容积/m3换热面积/m2功率/kW液氧进出口
    口径/mm
    液氮加注口
    口径/mm
    液氧液氮
    一级换热器14006004311.4363.030010050
    二级换热器13005505103.8121.01005050
    下载: 导出CSV
  • [1] 谢福寿,厉彦忠,王磊,等. 低温推进剂过冷技术研究[J]. 航空动力学报,2017,32(3): 762-768. doi: 10.13224/j.cnki.jasp.2017.03.031

    XIE Fushou,LI Yanzhong,WANG Lei,et al. Study on subcooled technology for cryogenic propellants[J]. Journal of Aerospace Power,2017,32(3): 762-768. (in Chinese) doi: 10.13224/j.cnki.jasp.2017.03.031
    [2] WANG Jiaojiao,LI Yanzhong,WANG Lei,et al. Experimental investigation on two-phase flow instabilities in long-distance transportation of liquid oxygen[J]. Cryogenics,2019,102: 56-64. doi: 10.1016/j.cryogenics.2019.07.006
    [3] MUSTAFI S, CANAVAN E, JOHNSON W, et al. Subcooling cryogenic propellants for long duration space exploration[R]. AIAA 2009-6584, 2009.
    [4] GORDON S, MCBRIDE B J. Theoretical performance of liquid hydrogen with liquid oxygen as a rocket propellant[R]. Cleveland, Ohio: NASA Lewis Research Center, 1959.
    [5] FROLOV S M,AKSENOV V S,IVANOV V S,et al. Rocket engine with continuous detonation combustion of the natural gas-oxygen propellant system[J]. Doklady Physical Chemistry,2018,478(2): 31-34. doi: 10.1134/S001250161802001X
    [6] MAYER W O H,IVANCIC B,SCHIK A,et al. Propellant atomization and ignition phenomena in liquid oxygen/gaseous hydrogen rocket combustors[J]. Journal of Propulsion and Power,2001,17(4): 794-799. doi: 10.2514/2.5835
    [7] MAYER W,TAMURA H. Propellant injection in a liquid oxygen/gaseous hydrogen rocket engine[J]. Journal of Propulsion and Power,1996,12(6): 1137-1147. doi: 10.2514/3.24154
    [8] PALASZEWSKI B, ZAKANY J. Metallized gelled propellants-oxygen/RP-1/aluminum rocket combustion experiments[R]. AIAA 1995-2435, 1995.
    [9] YANG W,SUN B. Numerical simulation of liquid film in a liquid oxygen/rocket propellant 1 liquid rocket[J]. Journal of Thermophysics and Heat Transfer,2012,26(2): 328-336. doi: 10.2514/1.T3759
    [10] CARNEY R R. “Slush hydrogen” production and handling as a fuel for space projects[M]. Boston, Massachusetts: Advances in Cryogenic Engineering. Springer, 1964
    [11] TOMSIK T M. Recent advances and applications in cryogenic propellant densification technology[R]. Cleveland, Ohio: NASA Glenn Research Center, 2000.
    [12] EWART R O, DERGANCE R H. Cryogenic propellant densification study[R]. Denver, Colorado: Martin Marietta Corp, 1978.
    [13] LAK T, LOZANO M, TOMSIK T. Advancement in cryogenic propulsion system performance through propellant densification[R]. AIAA 1996-3123, 1996.
    [14] DAWSON V P. Engines and innovation: Lewis laboratory and American propulsion technology[M]. Washington, DC: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1991.
    [15] TOMSIK T, TOMSIK T. Performance tests of a liquid hydrogen propellant densification ground support system for the X33/RLV[R]. AIAA 1997-2976, 1997.
    [16] LAK T, LOZANO M, NEARY D. Propellant densification without use of rotating machinery[R]. AIAA 2002-3599, 2002.
    [17] 谢福寿,雷刚,王磊,等. 低温推进剂地面加注系统冷量利用方案分析[J]. 宇航学报,2016,37(12): 1381-1386. doi: 10.3873/j.issn.1000-1328.2016.12.014

    XIE Fushou,LEI Gang,WANG Lei,et al. Analysis on utilization of cooling capacity for ground loading system of cryogenic propellants[J]. Journal of Astronautics,2016,37(12): 1381-1386. (in Chinese) doi: 10.3873/j.issn.1000-1328.2016.12.014
    [18] XIE Fushou,LI Yanzhong,WANG Lei,et al. Feasibility analysis and application consideration of a rapid method to obtain subcooled cryogenic propellants[J]. Applied Thermal Engineering,2017,118: 82-89. doi: 10.1016/j.applthermaleng.2017.02.088
    [19] 王磊,厉彦忠,马原,等. 长期在轨贮存低温推进剂过冷度获取方案研究[J]. 航空动力学报,2015,30(11): 2794-2802. doi: 10.13224/j.cnki.jasp.2015.11.030

    WANG Lei,LI Yanzhong,MA Yuan,et al. Investigation on acquisition schemes of cryogenic propellant subcooling for long-term on-orbit storage[J]. Journal of Aerospace Power,2015,30(11): 2794-2802. (in Chinese) doi: 10.13224/j.cnki.jasp.2015.11.030
    [20] CHO N,KWON O,KIM Y,et al. Investigation of helium injection cooling to liquid oxygen under pressurized condition[J]. Cryogenics,2006,46(11): 778-793. doi: 10.1016/j.cryogenics.2006.07.004
    [21] LIU Zhan,CUI Jie,YAN Jia,et al. Effect of initial parameter on thermodynamic performance in a liquid oxygen tank with pressurized helium gas[J]. Science and Technology for the Built Environment,2020,26(3): 426-436. doi: 10.1080/23744731.2019.1624096
    [22] SAHA P,SANDILYA P. A dynamic lumped parameter model of injection cooling system for liquid subcooling[J]. International Journal of Thermal Sciences,2018,132: 552-557. doi: 10.1016/j.ijthermalsci.2018.06.031
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  175
  • HTML浏览量:  70
  • PDF量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-20
  • 网络出版日期:  2023-09-12

目录

    /

    返回文章
    返回