Comparative investigation and experimental verification on depth subcooling schemes of cryogenic liquid oxygen
-
摘要:
从燃料密度、显冷量和贮箱增压压力等方面阐述了采用过冷液氧推进剂的性能优势。以获取66 K过冷液氧为目标,从低温工质消耗、功率消耗、系统复杂性和安全性等多个方面对液氧抽空减压、负压液氮浴换热和氦制冷循环3种过冷方案进行了定量与定性对比。针对液氮浴过冷技术进一步对比了单级与两级过冷方案,最终建议采用常压+负压两级液氮浴过冷方案获取66 K深度过冷液氧,并基于该方案搭建了半工业级液氧深度过冷验证平台,成功将液氮过冷至66 K以下。试验表明在0~3 L/s的液氧流量范围内,由于管道漏热,液氧过冷加注过程中其温度随着流量增大而降低。本试验验证了两级液氮浴过冷方案的可行性,为低温火箭发射场推进剂加注系统升级提供了理论及技术参考。
Abstract:The advantages of using subcooled liquid oxygen were illustrated in terms of density, apparent cooling capacity and pressurization pressure of the tank. For the purpose of acquiring 66 K subcooled liquid oxygen, three subcooling schemes, including: liquid oxygen evacuation, negative pressure liquid nitrogen bath and helium refrigeration cycle, were quantitatively and qualitatively compared from the perspectives of cryogenic mass consumption, work consumption, system process complexity and system security. The single-stage and two-stage subcooling schemes were further compared for the liquid nitrogen bath subcooling technology, and the two-stage liquid nitrogen bath subcooling scheme was finally recommended to acquire 66 K depth subcooled liquid oxygen. A semi-industrial experimental system of subcooled liquid oxygen acquisition was established based on the two-stage subcooling scheme, and liquid nitrogen was successfully subcooled to below 66 K. The experimental results showed that within the flowrate range of 0−3 L/s, the temperature of liquid oxygen in the process of subcooling filling decreased with the increase of flowrate due to the pipeline heat leakage. The feasibility of the two-stage liquid nitrogen bath subcooling scheme was verified by this experiment. This research could provide a theoretical and technical reference for the upgrading of propellant filling systems at launch sites for cryogenic rockets.
-
表 1 66 K液氧获取方案对比
Table 1. Comparison of acquisition schemes for 66 K liquid oxygen
过冷方案 耗氮量 抽氧量与
液氧质量比/%单位液氧消耗
压缩功/(MJ/m3)真空泵 部分设备 常沸点液氮消耗量
与液氧质量比/%过冷液氮消耗量
与液氧质量比/%真空泵
前后压比单位液氧消耗
泵功/(MJ/m3)液氧抽空 18.89 35.2 31.7 液氧真空泵
承压抽空罐液氮浴过冷 20.41 6.94 4.57 液氮真空泵
负压浴式换热器氦循环过冷 4.07 92.9 氦循环系统 表 2 单级液氮过冷与两级液氮过冷方案对比
Table 2. Comparison between single-stage and two-stage liquid nitrogen subcooling schemes
过冷
方案耗氮量 耗功量 常沸点液氮消耗量
与液氧质量比/%过冷液氮消耗量
与液氧质量比/%单位液氧消耗
泵功/(MJ/m3)单级
过冷20.41 4.57 两级
过冷8.47 12.54 2.83 表 3 换热器参数
Table 3. Parameters of heat exchangers
换热器 直径/mm 高度/mm 容积/m3 换热面积/m2 功率/kW 液氧进出口
口径/mm液氮加注口
口径/mm液氧 液氮 一级换热器 1400 600 4 311.4 363.0 300 100 50 二级换热器 1300 550 5 103.8 121.0 100 50 50 -
[1] 谢福寿,厉彦忠,王磊,等. 低温推进剂过冷技术研究[J]. 航空动力学报,2017,32(3): 762-768. doi: 10.13224/j.cnki.jasp.2017.03.031XIE Fushou,LI Yanzhong,WANG Lei,et al. Study on subcooled technology for cryogenic propellants[J]. Journal of Aerospace Power,2017,32(3): 762-768. (in Chinese) doi: 10.13224/j.cnki.jasp.2017.03.031 [2] WANG Jiaojiao,LI Yanzhong,WANG Lei,et al. Experimental investigation on two-phase flow instabilities in long-distance transportation of liquid oxygen[J]. Cryogenics,2019,102: 56-64. doi: 10.1016/j.cryogenics.2019.07.006 [3] MUSTAFI S, CANAVAN E, JOHNSON W, et al. Subcooling cryogenic propellants for long duration space exploration[R]. AIAA 2009-6584, 2009. [4] GORDON S, MCBRIDE B J. Theoretical performance of liquid hydrogen with liquid oxygen as a rocket propellant[R]. Cleveland, Ohio: NASA Lewis Research Center, 1959. [5] FROLOV S M,AKSENOV V S,IVANOV V S,et al. Rocket engine with continuous detonation combustion of the natural gas-oxygen propellant system[J]. Doklady Physical Chemistry,2018,478(2): 31-34. doi: 10.1134/S001250161802001X [6] MAYER W O H,IVANCIC B,SCHIK A,et al. Propellant atomization and ignition phenomena in liquid oxygen/gaseous hydrogen rocket combustors[J]. Journal of Propulsion and Power,2001,17(4): 794-799. doi: 10.2514/2.5835 [7] MAYER W,TAMURA H. Propellant injection in a liquid oxygen/gaseous hydrogen rocket engine[J]. Journal of Propulsion and Power,1996,12(6): 1137-1147. doi: 10.2514/3.24154 [8] PALASZEWSKI B, ZAKANY J. Metallized gelled propellants-oxygen/RP-1/aluminum rocket combustion experiments[R]. AIAA 1995-2435, 1995. [9] YANG W,SUN B. Numerical simulation of liquid film in a liquid oxygen/rocket propellant 1 liquid rocket[J]. Journal of Thermophysics and Heat Transfer,2012,26(2): 328-336. doi: 10.2514/1.T3759 [10] CARNEY R R. “Slush hydrogen” production and handling as a fuel for space projects[M]. Boston, Massachusetts: Advances in Cryogenic Engineering. Springer, 1964 [11] TOMSIK T M. Recent advances and applications in cryogenic propellant densification technology[R]. Cleveland, Ohio: NASA Glenn Research Center, 2000. [12] EWART R O, DERGANCE R H. Cryogenic propellant densification study[R]. Denver, Colorado: Martin Marietta Corp, 1978. [13] LAK T, LOZANO M, TOMSIK T. Advancement in cryogenic propulsion system performance through propellant densification[R]. AIAA 1996-3123, 1996. [14] DAWSON V P. Engines and innovation: Lewis laboratory and American propulsion technology[M]. Washington, DC: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1991. [15] TOMSIK T, TOMSIK T. Performance tests of a liquid hydrogen propellant densification ground support system for the X33/RLV[R]. AIAA 1997-2976, 1997. [16] LAK T, LOZANO M, NEARY D. Propellant densification without use of rotating machinery[R]. AIAA 2002-3599, 2002. [17] 谢福寿,雷刚,王磊,等. 低温推进剂地面加注系统冷量利用方案分析[J]. 宇航学报,2016,37(12): 1381-1386. doi: 10.3873/j.issn.1000-1328.2016.12.014XIE Fushou,LEI Gang,WANG Lei,et al. Analysis on utilization of cooling capacity for ground loading system of cryogenic propellants[J]. Journal of Astronautics,2016,37(12): 1381-1386. (in Chinese) doi: 10.3873/j.issn.1000-1328.2016.12.014 [18] XIE Fushou,LI Yanzhong,WANG Lei,et al. Feasibility analysis and application consideration of a rapid method to obtain subcooled cryogenic propellants[J]. Applied Thermal Engineering,2017,118: 82-89. doi: 10.1016/j.applthermaleng.2017.02.088 [19] 王磊,厉彦忠,马原,等. 长期在轨贮存低温推进剂过冷度获取方案研究[J]. 航空动力学报,2015,30(11): 2794-2802. doi: 10.13224/j.cnki.jasp.2015.11.030WANG Lei,LI Yanzhong,MA Yuan,et al. Investigation on acquisition schemes of cryogenic propellant subcooling for long-term on-orbit storage[J]. Journal of Aerospace Power,2015,30(11): 2794-2802. (in Chinese) doi: 10.13224/j.cnki.jasp.2015.11.030 [20] CHO N,KWON O,KIM Y,et al. Investigation of helium injection cooling to liquid oxygen under pressurized condition[J]. Cryogenics,2006,46(11): 778-793. doi: 10.1016/j.cryogenics.2006.07.004 [21] LIU Zhan,CUI Jie,YAN Jia,et al. Effect of initial parameter on thermodynamic performance in a liquid oxygen tank with pressurized helium gas[J]. Science and Technology for the Built Environment,2020,26(3): 426-436. doi: 10.1080/23744731.2019.1624096 [22] SAHA P,SANDILYA P. A dynamic lumped parameter model of injection cooling system for liquid subcooling[J]. International Journal of Thermal Sciences,2018,132: 552-557. doi: 10.1016/j.ijthermalsci.2018.06.031