Study on heat transfer characteristics of V-shaped discrete ribs in turbine blade passage
-
摘要:
通过模拟仿真的方法研究了涡轮叶片通道内部V型间断肋的传热特性。主要探究了各结构参数(间断位置,分离肋长度,分离肋后置距离)对通道的传热性能影响。结果表明:相对于传统的扰流肋结构(直肋,60°斜肋,60°V型肋),V型间断肋在壁面平均相对努塞尔数,综合传热系数以及温度分布均匀性上更具优势。通过改变间断参数,能大幅提高V型间断肋的综合传热系数。在研究的参数范围内,当间断位置为2.5 mm,分离肋长度为10.0 mm,分离肋后置距离为9.6 mm时,通道具有最佳的传热性能。在雷诺数为30000下,与带有直肋的通道相比,优化后的V型间断肋的平均努塞尔数提高了35.75%,综合传热系数上升了28.95%。
Abstract:The heat transfer characteristics of V-shaped discrete ribs in the internal passage of turbine blade were studied by simulation. The effects of structural parameters (separation positions, separation rib length, separation rib distance) on the heat transfer performance of the channel were investigated. The results showed that: compared with the traditional structure (transverse rib, 60° inclined rib, 60° V-shaped rib), V-shaped discrete rib had more advantages in terms of average relative Nusselt number, comprehensive heat transfer coefficient and temperature distribution uniformity. By changing the discrete parameters, the comprehensive heat transfer coefficient of V-shaped discrete ribs can be greatly improved. The channel had the best heat transfer performance when the separation positions was 2.5 mm, the length of separation rib was 10.0 mm and the distance behind separation rib was 9.6 mm. At the Reynolds number of 30 000, compared with the channel with transverse ribs, the average Nusselt number of the optimized V-shaped discrete ribs increased by 35.75%, and the comprehensive heat transfer coefficient increased by 28.95%.
-
Key words:
- turbine blade /
- internal cooling /
- spoiler rib /
- heat transfer characteristics /
- V-shaped rib
-
表 1 参数设置范围
Table 1. Parameter setting range
参数 变化范围 间断位置M/mm 2.5~12.5 分离肋长度G/mm 5.0~15.0 分离肋后置距离B/mm 7.2~16.8 -
[1] HAN J C,PARK J S. Developing heat transfer in rectangular channels with rib turbulators[J]. International Journal of Heat and Mass Transfer,1988,31(1): 183-195. doi: 10.1016/0017-9310(88)90235-9 [2] HAN J C,ZHANG Y M,LEE C P. Augmented heat transfer in square channels with parallel, crossed, and V-shaped angled ribs[J]. Journal of Heat Transfer,1991,113(3): 590-596. doi: 10.1115/1.2910606 [3] HAN J C. Heat transfer and friction in channels with two opposite rib-roughened walls[J]. Journal of Heat Transfer,1984,106(4): 774-781. doi: 10.1115/1.3246751 [4] HAN J C,OU S,PARK J S,et al. Augmented heat transfer in rectangular channels of narrow aspect ratios with rib turbulators[J]. International Journal of Heat and Mass Transfer,1989,32(9): 1619-1630. doi: 10.1016/0017-9310(89)90044-6 [5] HAN J C. Turbine blade cooling studies at texas A&M university: 1980-2004[J]. Journal of Thermophysics and Heat Transfer,2006,20(2): 161-187. doi: 10.2514/1.15403 [6] HAN J C,ZHANG Y M. High performance heat transfer ducts with parallel broken and V-shaped broken ribs[J]. International Journal of Heat and Mass Transfer,1992,35(2): 513-523. doi: 10.1016/0017-9310(92)90286-2 [7] CHANDRA P R,ALEXANDER C R,HAN J C. Heat transfer and friction behaviors in rectangular channels with varying number of ribbed walls[J]. International Journal of Heat and Mass Transfer,2003,46(3): 481-495. doi: 10.1016/S0017-9310(02)00297-1 [8] 饶宇,王德强,李彦霖. 涡轮叶片内部多通道微小扰流肋冷却流动传热实验研究[J]. 工程热物理学报,2019,40(10): 2321-2326.RAO Yu,WANG Deqiang,LI Yanlin. Study of heat transfer and pressure loss in multi-pass cooling passages with micro-ribs for turbine blade[J]. Journal of Engineering Thermophysics,2019,40(10): 2321-2326. (in Chinese) [9] MOON M A,PARK M J,KIM K Y. Evaluation of heat transfer performances of various rib shapes[J]. International Journal of Heat and Mass Transfer,2014,71: 275-284. doi: 10.1016/j.ijheatmasstransfer.2013.12.026 [10] 白万栋,梁栋,陈伟,等. 肋片扰流对柱肋通道传热和压损影响[J]. 航空动力学报,2019,34(11): 2509-2515. doi: 10.13224/j.cnki.jasp.2019.11.023BAI Wandong,LIANG Dong,CHEN Wei,et al. Rib influence on heat transfer and pressure drop in pin-fin array[J]. Journal of Aerospace Power,2019,34(11): 2509-2515. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.11.023 [11] ALFARAWI S,ABDEL-MONEIM S A,BODALAL A. Experimental investigations of heat transfer enhancement from rectangular duct roughened by hybrid ribs[J]. International Journal of Thermal Sciences,2017,118: 123-138. doi: 10.1016/j.ijthermalsci.2017.04.017 [12] 朱强华,崔苗,高效伟. 带斜孔肋大宽高比矩形通道的强化传热特性[J]. 航空动力学报,2016,31(4): 780-787. doi: 10.13224/j.cnki.jasp.2016.04.003ZHU Qianghua,CUI Miao,GAO Xiaowei. Enhanced heat transfer characteristics in a large aspect ratio rectangular channel with inclined perforated rib[J]. Journal of Aerospace Power,2016,31(4): 780-787. (in Chinese) doi: 10.13224/j.cnki.jasp.2016.04.003 [13] LAU S C,KUKREJA R T,MCMILLIN R D. Effects of V-shaped rib arrays on turbulent heat transfer and friction of fully developed flow in a square channel[J]. International Journal of Heat and Mass Transfer,1991,34(7): 1605-1616. doi: 10.1016/0017-9310(91)90140-A [14] WRIGHT L M,FU W L,HAN J C. Thermal performance of angled, V-shaped, and W-shaped rib turbulators in rotating rectangular cooling channels (AR=4∶1)[J]. Journal of Turbomachinery,2004,126(4): 604-614. doi: 10.1115/1.1791286 [15] PROMVONGE P,CHANGCHAROEN W,KWAN-KAOMENG S,et al. Numerical heat transfer study of turbulent square-duct flow through inline V-shaped discrete ribs[J]. International Communications in Heat and Mass Transfer,2011,38(10): 1392-1399. doi: 10.1016/j.icheatmasstransfer.2011.07.014 [16] SRIHARSHA V,PRABHU S V,VEDULA R P. Influence of rib height on the local heat transfer distribution and pressure drop in a square channel with 90° continuous and 60° V-broken ribs[J]. Applied Thermal Engineering,2009,29(11/12): 2444-2459. [17] TANDA G. Heat transfer in rectangular channels with transverse and V-shaped broken ribs[J]. International Journal of Heat and Mass Transfer,2004,47(2): 229-243. doi: 10.1016/S0017-9310(03)00414-9 [18] ABRAHAM S,VEDULA R P. Heat transfer and pressure drop measurements in a square cross-section converging channel with V and W rib turbulators[J]. Experimental Thermal and Fluid Science,2016,70: 208-219. doi: 10.1016/j.expthermflusci.2015.09.003 [19] HAN J C, PARK J S, IBRAHIM M Y. Measurement of heat transfer and pressure drop in rectangular channels with turbulence promoters[R]. NASA-CR-4015, 1986. [20] DITTUS F W, BOELTER L M K. Heat transfer in automobile radiators of the tubular type[J]. Berkeley: University of California Press, 1930. -