留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡轮叶片通道内部V型间断肋的传热特性研究

吴榕 缪克克 侯昶

吴榕, 缪克克, 侯昶. 涡轮叶片通道内部V型间断肋的传热特性研究[J]. 航空动力学报, 2023, 38(12):2817-2828 doi: 10.13224/j.cnki.jasp.20210390
引用本文: 吴榕, 缪克克, 侯昶. 涡轮叶片通道内部V型间断肋的传热特性研究[J]. 航空动力学报, 2023, 38(12):2817-2828 doi: 10.13224/j.cnki.jasp.20210390
WU Rong, MIAO Keke, HOU Chang. Study on heat transfer characteristics of V-shaped discrete ribs in turbine blade passage[J]. Journal of Aerospace Power, 2023, 38(12):2817-2828 doi: 10.13224/j.cnki.jasp.20210390
Citation: WU Rong, MIAO Keke, HOU Chang. Study on heat transfer characteristics of V-shaped discrete ribs in turbine blade passage[J]. Journal of Aerospace Power, 2023, 38(12):2817-2828 doi: 10.13224/j.cnki.jasp.20210390

涡轮叶片通道内部V型间断肋的传热特性研究

doi: 10.13224/j.cnki.jasp.20210390
详细信息
    作者简介:

    吴榕(1961-),男,副教授、硕士生导师,硕士,主要从事涡轮叶片冷却方面的研究

  • 中图分类号: V231.1

Study on heat transfer characteristics of V-shaped discrete ribs in turbine blade passage

  • 摘要:

    通过模拟仿真的方法研究了涡轮叶片通道内部V型间断肋的传热特性。主要探究了各结构参数(间断位置,分离肋长度,分离肋后置距离)对通道的传热性能影响。结果表明:相对于传统的扰流肋结构(直肋,60°斜肋,60°V型肋),V型间断肋在壁面平均相对努塞尔数,综合传热系数以及温度分布均匀性上更具优势。通过改变间断参数,能大幅提高V型间断肋的综合传热系数。在研究的参数范围内,当间断位置为2.5 mm,分离肋长度为10.0 mm,分离肋后置距离为9.6 mm时,通道具有最佳的传热性能。在雷诺数为30000下,与带有直肋的通道相比,优化后的V型间断肋的平均努塞尔数提高了35.75%,综合传热系数上升了28.95%。

     

  • 图 1  涡轮叶片通道模型

    Figure 1.  Turbine blade passage model

    图 2  V型间断肋示意图

    Figure 2.  Schematic of V-shaped discrete rib

    图 3  计算网格(312 万)

    Figure 3.  Computational grid (3.12 million)

    图 4  网格无关性验证

    Figure 4.  Verification of grid independence

    图 5  湍流模型验证

    Figure 5.  Verification of turbulence model

    图 6  不同类型肋的相对努塞尔数

    Figure 6.  Relative Nusselt numbers of different types of ribs

    图 7  不同类型肋的相对压力损失

    Figure 7.  Relative pressure loss of different types of ribs

    图 8  不同类型肋的综合传热系数

    Figure 8.  Comprehensive heat transfer coefficient of different types of ribs

    图 9  不同类型肋的相对努塞尔数分布

    Figure 9.  Relative Nusselt number distribution of different rib types

    图 10  不同类型肋的相对温度分布

    Figure 10.  Relative temperature distribution of different rib types

    图 11  不同类型肋的速度分布

    Figure 11.  Velocity distribution of different rib types

    图 12  不同间断位置下的相对努塞尔数

    Figure 12.  Relative Nusselt numbers under different separation positions

    图 13  不同间断位置下的相对压力损失

    Figure 13.  Relative pressure loss at different separation positions

    图 14  不同间断位置下的综合传热系数

    Figure 14.  Comprehensive heat transfer coefficient at different separation positions

    图 15  不同间断位置下的涡量分布

    Figure 15.  Vorticity distribution at different separation positions

    图 16  不同间断位置下的相对努塞尔数分布

    Figure 16.  Relative Nusselt number distribution at different separation positions

    图 17  不同间断位置下的相对温度分布

    Figure 17.  Relative temperature distribution at different separation positions

    图 18  不同分离肋长度下的相对努塞尔数

    Figure 18.  Relative Nusselt number under different separation rib lengths

    图 19  不同分离肋长度下的相对压力损失

    Figure 19.  Relative Pressure loss under different separation rib lengths

    图 20  不同分离肋长度下的综合传热系数

    Figure 20.  Comprehensive heat transfer coefficient under different separation rib length

    图 21  不同分离肋长度下的涡量分布

    Figure 21.  Vorticity distribution under different separation rib length

    图 22  不同分离肋长度下的相对努塞尔数分布

    Figure 22.  Relative Nusselt number distribution under different separation rib length

    图 23  不同分离肋长度下的相对温度分布

    Figure 23.  Relative temperature distribution under different separation rib length

    图 24  不同分离肋后置距离下的相对努塞尔数

    Figure 24.  Relative Nusselt number under different separation rib post distance

    图 25  不同分离肋后置距离下的相对压力损失

    Figure 25.  Relative pressure loss under different separation rib post distance

    图 26  不同分离肋后置距离下的综合传热系数

    Figure 26.  Comprehensive heat transfer coefficient under different separation rib post distance

    图 27  不同分离肋后置距离下的涡量分布

    Figure 27.  Vorticity distribution under different separation rib post distance

    图 28  不同分离肋后置距离下的相对努塞尔数分布

    Figure 28.  Relative Nusselt number distribution under different separation rib post distance

    图 29  不同分离肋后置距离下的相对温度分布

    Figure 29.  Relative temperature distribution under different separation rib post distance

    表  1  参数设置范围

    Table  1.   Parameter setting range

    参数变化范围
    间断位置M/mm2.5~12.5
    分离肋长度G/mm5.0~15.0
    分离肋后置距离B/mm7.2~16.8
    下载: 导出CSV
  • [1] HAN J C,PARK J S. Developing heat transfer in rectangular channels with rib turbulators[J]. International Journal of Heat and Mass Transfer,1988,31(1): 183-195. doi: 10.1016/0017-9310(88)90235-9
    [2] HAN J C,ZHANG Y M,LEE C P. Augmented heat transfer in square channels with parallel, crossed, and V-shaped angled ribs[J]. Journal of Heat Transfer,1991,113(3): 590-596. doi: 10.1115/1.2910606
    [3] HAN J C. Heat transfer and friction in channels with two opposite rib-roughened walls[J]. Journal of Heat Transfer,1984,106(4): 774-781. doi: 10.1115/1.3246751
    [4] HAN J C,OU S,PARK J S,et al. Augmented heat transfer in rectangular channels of narrow aspect ratios with rib turbulators[J]. International Journal of Heat and Mass Transfer,1989,32(9): 1619-1630. doi: 10.1016/0017-9310(89)90044-6
    [5] HAN J C. Turbine blade cooling studies at texas A&M university: 1980-2004[J]. Journal of Thermophysics and Heat Transfer,2006,20(2): 161-187. doi: 10.2514/1.15403
    [6] HAN J C,ZHANG Y M. High performance heat transfer ducts with parallel broken and V-shaped broken ribs[J]. International Journal of Heat and Mass Transfer,1992,35(2): 513-523. doi: 10.1016/0017-9310(92)90286-2
    [7] CHANDRA P R,ALEXANDER C R,HAN J C. Heat transfer and friction behaviors in rectangular channels with varying number of ribbed walls[J]. International Journal of Heat and Mass Transfer,2003,46(3): 481-495. doi: 10.1016/S0017-9310(02)00297-1
    [8] 饶宇,王德强,李彦霖. 涡轮叶片内部多通道微小扰流肋冷却流动传热实验研究[J]. 工程热物理学报,2019,40(10): 2321-2326.

    RAO Yu,WANG Deqiang,LI Yanlin. Study of heat transfer and pressure loss in multi-pass cooling passages with micro-ribs for turbine blade[J]. Journal of Engineering Thermophysics,2019,40(10): 2321-2326. (in Chinese)
    [9] MOON M A,PARK M J,KIM K Y. Evaluation of heat transfer performances of various rib shapes[J]. International Journal of Heat and Mass Transfer,2014,71: 275-284. doi: 10.1016/j.ijheatmasstransfer.2013.12.026
    [10] 白万栋,梁栋,陈伟,等. 肋片扰流对柱肋通道传热和压损影响[J]. 航空动力学报,2019,34(11): 2509-2515. doi: 10.13224/j.cnki.jasp.2019.11.023

    BAI Wandong,LIANG Dong,CHEN Wei,et al. Rib influence on heat transfer and pressure drop in pin-fin array[J]. Journal of Aerospace Power,2019,34(11): 2509-2515. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.11.023
    [11] ALFARAWI S,ABDEL-MONEIM S A,BODALAL A. Experimental investigations of heat transfer enhancement from rectangular duct roughened by hybrid ribs[J]. International Journal of Thermal Sciences,2017,118: 123-138. doi: 10.1016/j.ijthermalsci.2017.04.017
    [12] 朱强华,崔苗,高效伟. 带斜孔肋大宽高比矩形通道的强化传热特性[J]. 航空动力学报,2016,31(4): 780-787. doi: 10.13224/j.cnki.jasp.2016.04.003

    ZHU Qianghua,CUI Miao,GAO Xiaowei. Enhanced heat transfer characteristics in a large aspect ratio rectangular channel with inclined perforated rib[J]. Journal of Aerospace Power,2016,31(4): 780-787. (in Chinese) doi: 10.13224/j.cnki.jasp.2016.04.003
    [13] LAU S C,KUKREJA R T,MCMILLIN R D. Effects of V-shaped rib arrays on turbulent heat transfer and friction of fully developed flow in a square channel[J]. International Journal of Heat and Mass Transfer,1991,34(7): 1605-1616. doi: 10.1016/0017-9310(91)90140-A
    [14] WRIGHT L M,FU W L,HAN J C. Thermal performance of angled, V-shaped, and W-shaped rib turbulators in rotating rectangular cooling channels (AR=4∶1)[J]. Journal of Turbomachinery,2004,126(4): 604-614. doi: 10.1115/1.1791286
    [15] PROMVONGE P,CHANGCHAROEN W,KWAN-KAOMENG S,et al. Numerical heat transfer study of turbulent square-duct flow through inline V-shaped discrete ribs[J]. International Communications in Heat and Mass Transfer,2011,38(10): 1392-1399. doi: 10.1016/j.icheatmasstransfer.2011.07.014
    [16] SRIHARSHA V,PRABHU S V,VEDULA R P. Influence of rib height on the local heat transfer distribution and pressure drop in a square channel with 90° continuous and 60° V-broken ribs[J]. Applied Thermal Engineering,2009,29(11/12): 2444-2459.
    [17] TANDA G. Heat transfer in rectangular channels with transverse and V-shaped broken ribs[J]. International Journal of Heat and Mass Transfer,2004,47(2): 229-243. doi: 10.1016/S0017-9310(03)00414-9
    [18] ABRAHAM S,VEDULA R P. Heat transfer and pressure drop measurements in a square cross-section converging channel with V and W rib turbulators[J]. Experimental Thermal and Fluid Science,2016,70: 208-219. doi: 10.1016/j.expthermflusci.2015.09.003
    [19] HAN J C, PARK J S, IBRAHIM M Y. Measurement of heat transfer and pressure drop in rectangular channels with turbulence promoters[R]. NASA-CR-4015, 1986.
    [20] DITTUS F W, BOELTER L M K. Heat transfer in automobile radiators of the tubular type[J]. Berkeley: University of California Press, 1930.
  • 加载中
图(29) / 表(1)
计量
  • 文章访问数:  295
  • HTML浏览量:  50
  • PDF量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-24
  • 网络出版日期:  2023-09-01

目录

    /

    返回文章
    返回