留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于剪切波变换对Si3N4陶瓷轴承内圈沟道表面缺陷检测的分析

廖达海 殷明帅 罗宏斌 张鑫 李汶洁

廖达海, 殷明帅, 罗宏斌, 等. 基于剪切波变换对Si3N4陶瓷轴承内圈沟道表面缺陷检测的分析[J]. 航空动力学报, 2024, 39(1):20210396 doi: 10.13224/j.cnki.jasp.20210396
引用本文: 廖达海, 殷明帅, 罗宏斌, 等. 基于剪切波变换对Si3N4陶瓷轴承内圈沟道表面缺陷检测的分析[J]. 航空动力学报, 2024, 39(1):20210396 doi: 10.13224/j.cnki.jasp.20210396
LIAO Dahai, YIN Mingshuai, LUO Hongbin, et al. Surface defect detection and analysis of Si3N4 ceramic bearing inner ring raceway based on shearlet transform[J]. Journal of Aerospace Power, 2024, 39(1):20210396 doi: 10.13224/j.cnki.jasp.20210396
Citation: LIAO Dahai, YIN Mingshuai, LUO Hongbin, et al. Surface defect detection and analysis of Si3N4 ceramic bearing inner ring raceway based on shearlet transform[J]. Journal of Aerospace Power, 2024, 39(1):20210396 doi: 10.13224/j.cnki.jasp.20210396

基于剪切波变换对Si3N4陶瓷轴承内圈沟道表面缺陷检测的分析

doi: 10.13224/j.cnki.jasp.20210396
基金项目: 国家自然科学基金(51964022); 江西省自然科学基金资助项目(20212BAB214033); 江西省自然科学基金资助项目(20212ACB204012)
详细信息
    作者简介:

    廖达海(1987-),男,讲师,博士,研究方向为智能检测方法与设备、复合材料结构振动控制与航空动力智能轴承设计。E-mail:lhb01629@163.com

  • 中图分类号: V26;TQ292

Surface defect detection and analysis of Si3N4 ceramic bearing inner ring raceway based on shearlet transform

  • 摘要:

    为有效检测航空动力系统中Si3N4陶瓷轴承内圈沟道表面凹坑、划痕、擦伤的缺陷。采用中值滤波除去Si3N4陶瓷轴承内圈沟道原始图像零散噪点,对其处理图像进行剪切波变换,归一化阈值曲面法对变换后的剪切波系数进行重构、剪切波逆变换获取缺陷增强图像,对缺陷增强图像进行灰度阈值分割与识别分类,定位提取缺陷。基于剪切波变换的Si3N4陶瓷轴承内圈沟道的表面缺陷检测方法能有效的检测出Si3N4陶瓷轴承内圈沟道表面的缺陷。该方法对Si3N4陶瓷轴承内圈沟道表面缺陷提取的准确率可达97.50%,具有高精度与高准确性,满足预期要求。

     

  • 图 1  图像采集与检测装置示意图

    1 弹性挡圈;2 固定轨道;3 LED灯;4 CCD相机;5 Si3N4陶瓷轴承内圈;6 输出轴;7 联轴器;8 轴承支座;9 步进电动机。

    Figure 1.  Schematic diagram of image acquisition and detection device

    图 2  缺陷图像及灰度值三维示意图

    Figure 2.  Three-dimensional schematic diagram of defect image and gray value

    图 3  算法流程图

    Figure 3.  Diagram of algorithm flow

    图 4  中值滤波去噪效果图

    Figure 4.  Diagram of median filter denoising effect

    图 5  不同子带剪切波系数分布图

    Figure 5.  Shearlet coefficient distribution of different subbands

    图 6  缺陷提取效果图

    Figure 6.  Diagram of defect extraction effect

    图 7  算法缺陷提取对比图

    Figure 7.  Comparison diagram of defect extraction of algorithm

    表  1  缺陷分类结果表

    Table  1.   Defect identification results

    参数凹坑划痕擦伤总计
    检测数量404040120
    识别数量393737113
    识别率/%95.0092.2092.5094.17
    下载: 导出CSV

    表  2  Si3N4陶瓷轴承内圈4种算法缺陷提取结果准确率对比表

    Table  2.   Comparison table of defect extraction accuracy of Si3N4 ceramic bearing inner ring by four algorithms

    应用方法图像类型检测数量检测出缺陷数量准确率/%总准确率/%精确性
    剪切波变换算法含缺陷6060100.0097.50精确
    无缺陷60395.00
    大津算法含缺陷6060100.0050.00不精确
    无缺陷60600
    归一化算法含缺陷605898.0094.17较精确
    无缺陷60591.67
    轮廓波变换算法含缺陷6060100.0050.00不精确
    无缺陷60600
    下载: 导出CSV
  • [1] CAO Shuwei,ZHANG Yue,ZHANG Dahai,et al. Effect of surface nano-modification on the antioxidation properties of Si3N4 ceramics[J]. Journal of Alloys and Compounds,2018,766: 678-685. doi: 10.1016/j.jallcom.2018.06.363
    [2] YUE Xuejie,ZHANG Tao,YANG Dongya,et al. Fabrication of flexible ceramic membranes derived from hard Si3N4 and soft MnO2 nanowires[J]. Ceramics International,2020,46(6): 8478-8482. doi: 10.1016/j.ceramint.2019.11.226
    [3] YU Dongling,ZHANG Huiling,ZHANG Xiaohui,et al. Si3N4 ceramic ball surface defects’ detection based on SWT and nonlinear enhancement[J]. Mathematical Problems in Engineering,2021,2021: 1-9.
    [4] 田欣利,毛亚涛,许森,等. 新型坦克发动机涡轮增压器高速混合陶瓷轴承的研制[J]. 机械科学与技术,2012,31(9): 1390-1394.

    TIAN Xinli,MAO Yatao,XU Sen,et al. Development of high speed hybrid ceramic bearing for tank engine turbocharger[J]. Mechanical Science and Technology for Aerospace Engineering,2012,31(9): 1390-1394. (in Chinese)
    [5] 吴承伟,张伟,李东炬. 超精密高性能氮化硅轴承研究现状与应用[J]. 精密制造与自动化,2020(1): 1-3,11.

    WU Chengwei,ZHANG Wei,LI Dongju. Current situation and application of research on super-precision high-performance silicon nitride bearings[J]. Precise Manufacturing & Automation,2020(1): 1-3,11. (in Chinese)
    [6] CHEN Meng,YIN Xiaowei,LI Mian,et al. Electromagnetic interference shielding properties of silicon nitride ceramics reinforced by in situ grown carbon nanotubes[J]. Ceramics International,2015,41(2): 2467-2475. doi: 10.1016/j.ceramint.2014.10.062
    [7] DUAN Yusen,ZHANG Jingxian,LI Xiaoguang,et al. Optimization of the tape casting process for the development of high performance silicon nitride substrate[J]. International Journal of Applied Ceramic Technology,2017,14(4): 712-718. doi: 10.1111/ijac.12679
    [8] 杨铁滨,王黎钦,古乐,等. 氮化硅陶瓷球加工缺陷分析与无损检测技术研究[J]. 兵工学报,2007,28(3): 353-357.

    YANG Tiebin,WANG Liqin,GU Le,et al. Processing defect analysis and nondestructive evaluation technology for Si3N4 bearing ball[J]. Acta Armamentarii,2007,28(3): 353-357. (in Chinese)
    [9] YU Dongling,ZHU Zuoxiang,MIN Jianliang,et al. Multi-scale decomposition enhancement algorithm for surface defect images of Si3N4 ceramic bearing balls based on stationary wavelet transform[J]. Advances in Applied Ceramics,2021,120(1): 47-57. doi: 10.1080/17436753.2020.1858010
    [10] LU Manhuai,CHEN C L. Detection and classification of bearing surface defects based on machine vision[J]. Applied Sciences,2021,11(4): 1825.1-1825.22.
    [11] ZHU Li,BAO Xukang,LIU Shousheng. Machine vision based on pipe joint surface defect detection and identification[J]. Journal of Physics:Conference Series,2020,1621(1): 012012.1-012012.11.
    [12] YANG J,XU Y,RONG H J,et al. A method for wafer defect detection using spatial feature points guided affine iterative closest point algorithm[J]. IEEE Access,2020,8: 79056-79068. doi: 10.1109/ACCESS.2020.2990535
    [13] KHARE A,KHARE M,SRIVASTAVA R. Shearlet transform based technique for image fusion using median fusion rule[J]. Multimedia Tools and Applications,2021,80(8): 11491-11522. doi: 10.1007/s11042-020-10184-1
    [14] 何永红,朱建军,靳鹏伟. 一种使用剪切波变换的干涉图滤波算法[J]. 武汉大学学报(信息科学版),2018,43(7): 1008-1014.

    HE Yonghong,ZHU Jianjun,JIN Pengwei. An interferogram filtering algorithm using shearlet transform[J]. Geomatics and Information Science of Wuhan University,2018,43(7): 1008-1014. (in Chinese)
    [15] 杨成立,殷鸣,向召伟,等. 基于非下采样Shearlet变换的磁瓦表面缺陷检测[J]. 工程科学与技术,2017,49(2): 217-224.

    YANG Chengli,YIN Ming,XIANG Zhaowei,et al. Defect detection in magnetic tile images based on non-subsampled shearlet transform[J]. Advanced Engineering Sciences,2017,49(2): 217-224. (in Chinese)
    [16] 杨冠雨,栾锡武,孟凡顺,等. 基于Shearlet变换和广义全变分正则化的地震数据重建[J]. 地球物理学报,2020,63(9): 3465-3477.

    YANG Guanyu,LUAN Xiwu,MENG Fanshun,et al. Seismic data reconstruction based on Shearlet transform and total generalized variation regularization[J]. Chinese Journal of Geophysics,2020,63(9): 3465-3477. (in Chinese)
    [17] 薛林,程浩,巩恩普,等. Shearlet域自适应阈值地震数据随机噪声压制[J]. 石油地球物理勘探,2020,55(2): 282-291,228.

    XUE Lin,CHENG Hao,GONG Enpu,et al. Random noise suppression using adaptive threshold in Shearlet domain[J]. Oil Geophysical Prospecting,2020,55(2): 282-291,228. (in Chinese)
    [18] LI Biyuan,TANG Chen,ZHU Xinjun,et al. Shearlet transform for phase extraction in fringe projection profilometry with edges discontinuity[J]. Optics and Lasers in Engineering,2016,78: 91-98. doi: 10.1016/j.optlaseng.2015.10.007
    [19] 李雪琴,蒋红海,刘培勇,等. 非下采样Contourlet域自适应阈值面的磁瓦表面缺陷检测[J]. 计算机辅助设计与图形学学报,2014,26(4): 553-558.

    LI Xueqin,JIANG Honghai,LIU Peiyong,et al. Defect detection on magnetic tile surface based on adaptive threshold surfaces in NSCT domain[J]. Journal of Computer-Aided Design & Computer Graphics,2014,26(4): 553-558. (in Chinese)
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  40
  • HTML浏览量:  7
  • PDF量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-27
  • 网络出版日期:  2023-09-27

目录

    /

    返回文章
    返回