留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缝式机匣处理对对转压气机的扩稳机理

高丽敏 王磊 茅晓晨 郭彦超

高丽敏, 王磊, 茅晓晨, 等. 缝式机匣处理对对转压气机的扩稳机理[J]. 航空动力学报, 2023, 38(3):640-654 doi: 10.13224/j.cnki.jasp.20210459
引用本文: 高丽敏, 王磊, 茅晓晨, 等. 缝式机匣处理对对转压气机的扩稳机理[J]. 航空动力学报, 2023, 38(3):640-654 doi: 10.13224/j.cnki.jasp.20210459
GAO Limin, WANG Lei, MAO Xiaochen, et al. Mechanism of stability improvement with slot casing treatment in counter-rotating compressor[J]. Journal of Aerospace Power, 2023, 38(3):640-654 doi: 10.13224/j.cnki.jasp.20210459
Citation: GAO Limin, WANG Lei, MAO Xiaochen, et al. Mechanism of stability improvement with slot casing treatment in counter-rotating compressor[J]. Journal of Aerospace Power, 2023, 38(3):640-654 doi: 10.13224/j.cnki.jasp.20210459

缝式机匣处理对对转压气机的扩稳机理

doi: 10.13224/j.cnki.jasp.20210459
基金项目: 国家自然科学基金重大项目(51790512); 国家自然科学基金(52106057); 国家科技重大专项(J2019-Ⅱ-0016-0037); 中央高校基本科研业务费(D5000210483)
详细信息
    作者简介:

    高丽敏(1973-),女,教授、博士生导师,博士,主要从事叶轮机械气动热力学方面的研究。E-mail: gaolm@nwpu.edu.cn

  • 中图分类号: V231.3

Mechanism of stability improvement with slot casing treatment in counter-rotating compressor

  • 摘要:

    为探索缝式机匣处理在对转压气机中的适用性,采用数值模拟的方法研究了缝式机匣处理对对转压气机气动性能和稳定裕度的影响。通过分析缝式机匣处理对压气机总体性能和叶尖流场的影响,以揭示缝式机匣处理在对转压气机中的扩稳机理。研究表明:缝式机匣处理可以提高对转压气机的失速裕度,机匣处理的轴向位置对对转压气机的气动性能和失速裕度有显著的影响。随着机匣处理的前移,对转压气机峰值效率的亏损逐渐减小,而失速裕度改善程度相差不大。机匣处理缝的抽吸和射流效应减弱了转子R2叶顶通道的堵塞程度,通过抑制叶尖泄漏流和二次泄漏流的发展以推迟失速的发生,进而实现扩稳。此外,缝式机匣处理时可能改变该对转压气机的最先失速级,同时也证明了缝式机匣处理在变工况下扩稳的有效性。

     

  • 图 1  对转轴流压气机

    Figure 1.  Counter-rotating axial flow compressor

    图 2  缝式机匣处理几何示意图

    Figure 2.  Schematic diagram of slot casing treatment

    图 3  转子叶片网格示意图

    Figure 3.  Schematic diagram of rotor blade grid

    图 4  机匣处理网格示意图

    Figure 4.  Schematic diagram of casing treatment grid

    图 5  计算域网格无关性验证

    Figure 5.  Grid independence verification of computational domain

    图 6  实验和数值计算压气机总性能对比

    Figure 6.  Overall performance comparison between experiment and numerical calculation results of compressor

    图 7  对转压气机总特性对比

    Figure 7.  Comparison of the overall performance of counter-rotating compressor

    图 8  3种方案下 VSMIVPEI 的比较

    Figure 8.  Comparison of VSMI and VPEI under three schemes

    图 9  0.99倍叶高相对马赫数分布

    Figure 9.  Mach number distribution at 0.99 times span

    图 10  实壁机匣近失速点下叶顶间隙泄漏流分布

    Figure 10.  Distribution of tip leakage flow at near stall point of solid casing

    图 11  转子0.99倍叶高叶片表面静压分布

    Figure 11.  Static pressure distribution on the blade surface of rotor at 0.99 times span

    图 12  间隙泄漏流轴向与切向速度沿弦长分布

    Figure 12.  Gap leakage flow axial and tangential velocity distribution along the chord length

    图 13  转子R2进出口轴向速度沿叶高分布

    Figure 13.  Rotor R2 inlet and outlet axial velocity distribution along the blade span

    图 14  转子R2进口相对气流角沿叶高分布

    Figure 14.  Rotor R2 inlet relative flow angle distribution along the blade span

    图 15  实壁机匣近失速工况与机匣处理近失速工况下0.99倍叶高处流场

    Figure 15.  Flow field at 0.99 times blade span at near stall point of solid casing and casing treatment

    图 16  子午面熵及流线分布

    Figure 16.  Distribution of entropy and streamlines in the meridian plane

    图 17  不同机匣下周向平均熵的积分值

    Figure 17.  Integral of circumferential averaged entropy with different casings.

    图 18  机匣处理开口面处绝对速度径向分量分布

    Figure 18.  Distribution of radial component of absolute velocity at open face of casing treatment

    图 19  3种机匣处理方案下缝的抽吸量与射流量的分布

    Figure 19.  Distribution of bleed and inject mass flow in the slots with the three casing treatment schemes

    图 20  转速比为1.25时实壁机匣与缝式机匣处理下对转压气机总特性

    Figure 20.  Comparison the overall performance of compressor at speed ratio of 1.25 under solid casing and slot casing treatment

    图 21  转速比为1.11时实壁机匣与缝式机匣处理下对转压气机总特性

    Figure 21.  Comparison the overall performance of compressor at speed ratio of 1.11 under solid casing and slot casing treatment

    图 22  两种转速比下VSMI VPEI 的比较

    Figure 22.  Comparison of VSMI and VPEI at two speed ratios

    表  1  转子的主要设计参数

    Table  1.   Main design parameters of the rotors

    设计参数转子1(R1)转子2(R2)
    转速N/(r/min)8000−8000
    叶片数n1920
    叶顶间隙τ/mm0.50.5
    叶尖弦长C/m0.08320.0769
    叶尖速度Utip/(m/s)167.6167.6
    进口轮毂比0.4850.641
    下载: 导出CSV

    表  2  缝式机匣处理几何参数

    Table  2.   Geometry parameters of slot casing treatment

    参数缝式机匣处理类型
    ASCT1ASCT2ASCT3
    缝长(L/Ca)/%100100100
    缝宽W/mm7.47.47.4
    缝深D/mm121212
    缝数(单通道缝数)m666
    中心偏移度00.210.42
    W/W12/12/12/1
    下载: 导出CSV

    表  3  缝式机匣处理扩稳效果评估

    Table  3.   Evaluation of stability expansion effect of slot casing treatment

    机匣类型MSMF/(kg/s)VSMI/%VPEI/%
    ASCT14.816.23−2.15
    ASCT24.8066.15−1.82
    ASCT34.8076.29−0.99
    下载: 导出CSV
  • [1] JOLY M, VERSTRAETE T, PANIAGUA G. Full design of a highly loaded and compact contra-rotating fan using multidisciplinary evolutionary optimization[R]. ASME Paper GT2013-94433,2013.
    [2] MISTRY C,PRADEEP A M. Effect of variation in axial spacing and rotor speed combinations on the performance of a high aspect ratio contra-rotating axial fan stage[J]. Journal of Power and Energy,2013,227(2): 138-146. doi: 10.1177/0957650912467453
    [3] MANAS M P,PRADEEP A M. Stall inception mechanisms in a contra-rotating fan operating at different speed combinations[J]. Journal of Power and Energy,2019,234(8): 1014-1052.
    [4] KERREBROCK J L,EPSTEIN A H,MERCHANT A A,et al. Design and test of an aspirated counter-rotating fan[J]. Journal of Turbomachinery,2008,130(2): 293-302.
    [5] MEYER T, KNOBLOCH K, LINDEN J. Hot-wire measurements in a high speed counter rotating turbo fan rig[R]. ASME Paper GT2010-22569,2010.
    [6] CHEN Y Y,LIU B,XUAN Y,et al. A study of speed ratio affecting the performance of a contra-rotating axial compressor[J]. Journal of Aerospace Engineering,2008,222(7): 985-991.
    [7] 高丽敏,苗芳,李瑞宇,等. 动/动干涉效应对叶片非定常负荷的影响[J]. 航空学报,2014,35(7): 1874-1881. doi: 10.7527/S1000-6893.2013.0509

    GAO Limin,MIAO Fang,LI Ruiyu,et al. Effect of rotor/rotor interactions on blades unsteady loading[J]. Acta Aeronautica et Astronautica Sinica,2014,35(7): 1874-1881. (in Chinese) doi: 10.7527/S1000-6893.2013.0509
    [8] MAO X,LIU B,ZHAO H. Effects of tip clearance size on the unsteady flow behaviors and performance in a counter-rotating axial flow compressor[J]. Journal of Aerospace Engineering,2017,233(3): 1059-1070.
    [9] YUE S,WANG Y,WEI L,et al. Experimental investigation on the development process of large-scale low-speed stall disturbance in contra-rotating compressor[J]. Journal of Thermal Science,2020,29(5): 1282-1291. doi: 10.1007/s11630-020-1341-z
    [10] GAO L, LI X, JIAN X, et al. The effect of speed ratio on the first rotating stall stage in contra-rotating compressor[R]. ASME Paper GT2012-68802,2012.
    [11] 刘波,茅晓晨,张鹏,等. 对转压气机叶尖间隙效应对其性能影响的研究[J]. 推进技术,2016,37(5): 815-825.

    LIU Bo,MAO Xiaochen,ZHANG Peng,et al. Research on effects of tip clearance on performance of a contra-rotating compressor[J]. Journal of Propulsion Technology,2016,37(5): 815-825. (in Chinese)
    [12] 徐强仁,刘智远,马英群,等. 高负荷对转压气机尾迹涡对叶顶泄漏流的影响[J]. 工程热物理学报,2020,41(4): 822-828.

    XU Qiangren,LIU Zhiyuan,MA Yingqun,et al. The impact of wake vortices on the tip clearance flow in a high-load counter-rotating compressor[J]. Journal of Engineering Thermophysics,2020,41(4): 822-828. (in Chinese)
    [13] MOORE R D. Effect of casing treatment on overall and blade element performance of a compressor rotor[R]. NASA TN D-6538,1971.
    [14] OSBORN W M, LEWIS G E, HEIDELBERG L J. Effect of several porous casing treatments on stall limit and on overall performance of an axial flow compressor rotor[R]. NASA TN D-6537,1971.
    [15] 卢新根,楚武利,朱俊强,等. 轴流压气机机匣处理研究进展及评述[J]. 力学进展,2006,36(2): 222-232. doi: 10.3321/j.issn:1000-0992.2006.02.006

    LU Xingen,CHU Wuli,ZHU Junqiang,et al. A review of studies on casing treatment of axial-flow compressor[J]. Advance in Mechanics,2006,36(2): 222-232. (in Chinese) doi: 10.3321/j.issn:1000-0992.2006.02.006
    [16] MÜLLER M W, SCHIFFER H P, VOGES M, et al. Investigation of passage flow features in a transonic compressor rotor with casing treatments[R].ASME Paper GT2011-45364,2011.
    [17] WILKE I, KAU H P. A numerical investigation of the flow mechanisms in a HPC front stage with axial slots[R].ASME Paper GT 2003-38481,2003.
    [18] WILKE I, BRIGNOLE G, AKAU H P. Numerically aided design of a high-efficient casing treatment for a transonic compressor[R].ASME Paper GT2005-68993,2005.
    [19] 张皓光,楚武利,吴艳辉. 缝式处理机匣轴向位置对压气机特性影响的机理[J]. 航空动力学报,2011,26(1): 92-98. doi: 10.13224/j.cnki.jasp.2011.01.013

    ZHANG Haoguang,CHU Wuli,WU Yanhui. Mechanism of influences of axial positions of axial skewed slot casing treatment on a compressor performance[J]. Journal of Aerospace Power,2011,26(1): 92-98. (in Chinese) doi: 10.13224/j.cnki.jasp.2011.01.013
    [20] ZHOU X,ZHAO Q,CUI W,et al. Investigation on axial effect of slot casing treatment in a transonic compressor[J]. Applied Thermal Engineering,2017,126: 53-69. doi: 10.1016/j.applthermaleng.2017.07.165
    [21] BRIGNOLE G A, DANNER F, KAU H P. Time resolved simulation and experimental validation of the flow in axial slot casing treatments for transonic axial compressors[R].ASME Paper GT2008-50593,2008.
    [22] DJEGHRI N, VO H D, YU H. Parametric study for lossless casing treatment on a mixed-flow compressor rotor[R].ASME Paper GT2015-42750,2015.
    [23] ZHANG H G,ZHANG X D,WU Y H,et al. Flow mechanism of affecting an axial flow compressor performance and stability with cross-blade slot casing treatments[J]. Journal of Power and Energy,2019,233(1): 17-36. doi: 10.1177/0957650918772620
    [24] KUANG H,CHU S W,ZHANG H,et al. Flow mechanism for stall margin improvement via axial slot casing treatment on a transonic axial compressor[J]. Journal of Applied Fluid Mechanics,2017,10(2): 703-712. doi: 10.18869/acadpub.jafm.73.239.27047
    [25] PUNDHIR D S,SHARMA P B,CHAUDHARY K K. Effect of casing treatment on aerodynamic performance of a contrarotating axial compressor stage[J]. Journal of Power and Energy,1990,204(11): 47-55.
    [26] MAO X,LIU B,ZHAO H. Numerical analysis of the circumferential grooves casing treatment in a counter-rotating axial flow compressor[J]. Applied Thermal Engineering,2017,130: 29-39.
    [27] MAO X,LIU B,TANG T,et al. The Impact of casing groove location on the flow instability in a counter-rotating axial flow compressor[J]. Aerospace Science and Technology,2018,76: 250-259. doi: 10.1016/j.ast.2018.01.037
    [28] 李晓军,高丽敏,谢建,等. 双级对转压气机的失速机理[J]. 航空动力学报,2013,28(1): 188-194.

    LI Xiaojun,GAO Limin,XIE Jian,et al. Rotating stall mechanism of dual-stage contra-rotating compressor[J]. Journal of Aerospace Power,2013,28(1): 188-194. (in Chinese)
    [29] GREITZER E M,NIKKANEN J P,HADDAD D E,et al. A Fundamental criterion for the application of rotor casing treatment[J]. Journal of Fluids Engineering,1979,101(2): 237-243. doi: 10.1115/1.3448945
    [30] ZHANG S, CHU W, YANG J. Effect of axial short slot casing treatment and its center deviation on stability of a transonic axial flow compressor[R].ASME Paper GT2020-14588,2020.
    [31] MA N, NAN X, LIN F. Numerical study on effects of axial-slot casing treatment on peak efficiency of axial compressors[R].ASME Paper GT2016-56554,2016.
    [32] 张皓光, 谭锋, 安康, 等. 进口畸变下缝式机匣处理改善轴流压气机性能的研究[J].推进技术,2018,39(1):46-58.

    ZHANG Haoguang, TAN Feng, AN Kang, et al. Investigation of performance improvement for axial flow compressor with slots casing treatment with inlet distortion[J]. Journal of Propulsion Technology,2018,39(1):46-58. (in Chinese)
    [33] BA D,ZHANG Q,LI Z,et al. Design optimization of axial slot casing treatment in a highly-loaded mixed-flow compressor[J]. Aerospace Science and Technology,2020,107: 106262.1-106262.12.
    [34] 郭彦超,高丽敏,杨冠华,等. 对转压气机中自循环机匣处理扩稳机理的研究[J]. 航空动力学报,2022,37(1): 191-203. doi: 10.13224/j.cnki.jasp.20210009

    GUO Yanchao,GAO Liming,YANG Guanhua,et al. Study on the mechanism of stability improvement of the self-circulating casing treatment in a counter-rotating compressor[J]. Journal of Aerospace Power,2022,37(1): 191-203. (in Chinese) doi: 10.13224/j.cnki.jasp.20210009
    [35] GAO L,LI R,MIAO F,et al. Unsteady investigation on tip flow field and rotating stall in counter-rotating axial compressor[J]. Journal of Engineering for Gas Turbines and Power,2015,137(7): 072603.1-072603.11.
  • 加载中
图(25) / 表(3)
计量
  • 文章访问数:  194
  • HTML浏览量:  94
  • PDF量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-19
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回