留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于广义精细复合多尺度量子熵和核主成分分析的中介轴承故障诊断方法

田晶 张羽薇 张凤玲 艾辛平 高崇

田晶, 张羽薇, 张凤玲, 等. 基于广义精细复合多尺度量子熵和核主成分分析的中介轴承故障诊断方法[J]. 航空动力学报, 2024, 39(2):20210467 doi: 10.13224/j.cnki.jasp.20210467
引用本文: 田晶, 张羽薇, 张凤玲, 等. 基于广义精细复合多尺度量子熵和核主成分分析的中介轴承故障诊断方法[J]. 航空动力学报, 2024, 39(2):20210467 doi: 10.13224/j.cnki.jasp.20210467
TIAN Jing, ZHANG Yuwei, ZHANG Fengling, et al. Inter-shaft bearing fault diagnosis method based on generalized refined composite multiscale quantum entropy and kernel principal component analysis[J]. Journal of Aerospace Power, 2024, 39(2):20210467 doi: 10.13224/j.cnki.jasp.20210467
Citation: TIAN Jing, ZHANG Yuwei, ZHANG Fengling, et al. Inter-shaft bearing fault diagnosis method based on generalized refined composite multiscale quantum entropy and kernel principal component analysis[J]. Journal of Aerospace Power, 2024, 39(2):20210467 doi: 10.13224/j.cnki.jasp.20210467

基于广义精细复合多尺度量子熵和核主成分分析的中介轴承故障诊断方法

doi: 10.13224/j.cnki.jasp.20210467
基金项目: 国家自然科学基金(12172231); 沈阳市中青年科技创新人才支持计划(RC220439)
详细信息
    作者简介:

    田晶(1987-),男,教授、硕士生导师,博士,主要从事航空发动机状态监测与故障诊断方面的研究

  • 中图分类号: V231.92

Inter-shaft bearing fault diagnosis method based on generalized refined composite multiscale quantum entropy and kernel principal component analysis

  • 摘要:

    针对中介轴承振动信号传递到机匣测表面上路径复杂,导致故障特征提取及识别困难等问题,提出了一种基于广义精细复合多尺度量子熵(generalized refined composite multiscale quantum entropy, GRCMQE)、核主成分分析(kernel principal component analysis, KPCA)与参数优化支持向量机的中介轴承故障诊断方法。该方法首先采用GRCMQE从振动信号中提取故障特征,构建高维故障特征集。其次,采用KPCA方法对高维特征数据降维,得到低维流形特征。然后,将得到的特征输入到基于交叉验证优化的支持向量机(cross validation- support vector machine, CV-SVM)中,完成故障模式识别。最后,在中介轴承故障数据集上对所提出的方法进行测试,结果表明该方法能够有效实现中介轴承不同故障类型的识别,并且故障识别精度达到98.33%。

     

  • 图 1  广义精细复合多尺度量子熵计算流程图

    Figure 1.  Flowchart of GRCMQE

    图 2  噪声信号波形图

    Figure 2.  Waveforms of noise signals

    图 3  白噪声和粉红噪声在不同数据长度下的MQE、GMQE、GRCMQE

    Figure 3.  MQE、GMQE、GRCMQE of white noise and pink noise under different data lengths

    图 4  广义精细复合多尺度量子熵在不同嵌入维数下对比

    Figure 4.  Comparison analysis of GRCMQE with different embedding dimension

    图 5  广义精细复合多尺度量子熵在不同时延常数下对比

    Figure 5.  Comparison analysis of GRCMQE with different delay constant

    图 6  KPCA降维算法示意图

    Figure 6.  Schematic diagram of KPCA dimensionality reduction algorithm

    图 7  中介轴承故障诊断流程图

    Figure 7.  Flow chart of inter-shaft bearing fault diagnosis

    图 8  中介轴承故障模拟实验台

    Figure 8.  Inter-shaft bearing fault simulation test bench

    图 9  加速度传感器示意图

    Figure 9.  Schematic diagram of acceleration sensors

    图 10  实验轴承

    Figure 10.  Bearings used in the test

    图 11  中介轴承振动信号时域波形图

    Figure 11.  Time domain waveforms of inter-shaft bearing vibration signal

    图 12  不同故障类型Hilbort包络信号频谱图

    Figure 12.  Spectrum diagram of Hilbort envelope signals of different fault types

    图 13  不同故障类型振动信号的GRCMQE特征值

    Figure 13.  GRCMQE of vibration signals of different fault types

    图 14  不同故障类型振动信号的MQE特征值

    Figure 14.  MQE of vibration signals of different fault types

    图 15  KPCA特征融合结果

    Figure 15.  KPCA feature fusion results

    图 16  基于KPCA的CV-SVM分类结果

    Figure 16.  CV-SVM classification results based on KPCA

  • [1] 邓四二,付金辉,王燕霜,等. 航空发动机滚动轴承-双转子系统动态特性分析[J]. 航空动力学报,2013,28(1): 195-204. DENG Sier,FU Jinhui,WANG Yanshuang,et al. Analysis on dynamic characteristics of aero-engine rolling bearing/dual-rotor system[J]. Journal of Aerospace Power,2013,28(1): 195-204. (in Chinese

    DENG Sier, FU Jinhui, WANG Yanshuang, et al. Analysis on dynamic characteristics of aero-engine rolling bearing/dual-rotor system[J]. Journal of Aerospace Power, 2013, 28(1): 195-204. (in Chinese)
    [2] 高朋,侯磊,陈予恕. 双转子-中介轴承系统非线性振动特性[J]. 振动与冲击,2019,38(15): 1-10. GAO Peng,HOU Lei,CHEN Yushu. Nonlinear vibration characteristics of a dual-rotor system with inter-shaft bearing[J]. Journal of Vibration and Shock,2019,38(15): 1-10. (in Chinese

    GAO Peng, HOU Lei, CHEN Yushu. Nonlinear vibration characteristics of a dual-rotor system with inter-shaft bearing[J]. Journal of Vibration and Shock, 2019, 38(15): 1-10. (in Chinese)
    [3] 田晶,周杰,王术光,等. 基于自适应双稳态随机共振的中介轴承故障诊断方法[J]. 航空动力学报,2019,34(10): 2237-2245. TIAN Jing,ZHOU Jie,WANG Shuguang,et al. Fault diagnosis method of inter-shaft bearing based on adaptive bistable stochastic resonance[J]. Journal of Aerospace Power,2019,34(10): 2237-2245. (in Chinese

    TIAN Jing, ZHOU Jie, WANG Shuguang, et al. Fault diagnosis method of inter-shaft bearing based on adaptive bistable stochastic resonance[J]. Journal of Aerospace Power, 2019, 34(10): 2237-2245. (in Chinese)
    [4] 赵志宏,杨绍普. 一种基于样本熵的轴承故障诊断方法[J]. 振动与冲击,2012,31(6): 136-140,154. ZHAO Zhihong,YANG Shaopu. Sample entropy-based roller bearing fault diagnosis method[J]. Journal of Vibration and Shock,2012,31(6): 136-140,154. (in Chinese

    ZHAO Zhihong, YANG Shaopu. Sample entropy-based roller bearing fault diagnosis method[J]. Journal of Vibration and Shock, 2012, 31(6): 136-140, 154. (in Chinese)
    [5] 田晶,王英杰,王志,等. 基于EEMD与空域相关降噪的滚动轴承故障诊断方法[J]. 仪器仪表学报,2018,39(7): 144-151. TIAN Jing,WANG Yingjie,WANG Zhi,et al. Fault diagnosis for rolling bearing based on EEMD and spatial correlation denoising[J]. Chinese Journal of Scientific Instrument,2018,39(7): 144-151. (in Chinese

    TIAN Jing, WANG Yingjie, WANG Zhi, et al. Fault diagnosis for rolling bearing based on EEMD and spatial correlation denoising[J]. Chinese Journal of Scientific Instrument, 2018, 39(7): 144-151. (in Chinese)
    [6] RICHMAN J S,MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology Heart and Circulatory Physiology,2000,278(6): 2039-2049. doi: 10.1152/ajpheart.2000.278.6.H2039
    [7] COSTA M,GOLDBERGER A L,PENG C K. Multiscale entropy analysis of complex physiologic time series[J]. Physical Review Letters,2002,89(6): 068102.1-068102.4.
    [8] 王振亚,姚立纲. 广义精细复合多尺度样本熵与流形学习相结合的滚动轴承故障诊断方法[J]. 中国机械工程,2020,31(20): 2463-2471. WANG Zhenya,YAO Ligang. Rolling bearing fault diagnosis method based on generalized refined composite multiscale sample entropy and manifold learning[J]. China Mechanical Engineering,2020,31(20): 2463-2471. (in Chinese

    WANG Zhenya, YAO Ligang. Rolling bearing fault diagnosis method based on generalized refined composite multiscale sample entropy and manifold learning[J]. China Mechanical Engineering, 2020, 31(20): 2463-2471. (in Chinese)
    [9] SERGI A,GIAQUINTA P. Linear quantum entropy and non-hermitian hamiltonians[J]. Entropy,2016,18(12): 451. doi: 10.3390/e18120451
    [10] AI Yanting,TIAN Bowen,TIAN Jing,et al. Acoustic emission signal feature extraction of inter-shaft bearing based on quantum entropy[C]//2019 Prognostics and System Health Management Conference. Piscataway,US: IEEE,2019: 1-5.
    [11] 刘丽丽,田晶,刘广鑫,等. 基于多尺度量子熵的中介轴承声发射信号故障特征提取技术研究[J]. 沈阳航空航天大学学报,2020,37(2): 1-9. LIU Lili,TIAN Jing,LIU Guangxin,et al. Research on fault feature extraction technology of acoustic emission signal of inter-shaft bearing based on multi-scale quantum entropy[J]. Journal of Shenyang Aerospace University,2020,37(2): 1-9. (in Chinese

    LIU Lili, TIAN Jing, LIU Guangxin, et al. Research on fault feature extraction technology of acoustic emission signal of inter-shaft bearing based on multi-scale quantum entropy[J]. Journal of Shenyang Aerospace University, 2020, 37(2): 1-9. (in Chinese)
    [12] MA Ping,ZHANG Hongli,FAN Wenhui,et al. A diagnosis framework based on domain adaptation for bearing fault diagnosis across diverse domains[J]. ISA Transactions,2020,99: 465-478. doi: 10.1016/j.isatra.2019.08.040
    [13] COSTA M D,GOLDBERGER A L. Generalized multiscale entropy analysis: application to quantifying the complex volatility of human heartbeat time series[J]. Entropy,2015,17(3): 1197-1203. doi: 10.3390/e17031197
    [14] 胡洁. 高维数据特征降维研究综述[J]. 计算机应用研究,2008,25(9): 2601-2606. HU Jie. Survey on feature dimension reduction for high-dimensional data[J]. Application Research of Computers,2008,25(9): 2601-2606. (in Chinese

    HU Jie. Survey on feature dimension reduction for high-dimensional data[J]. Application Research of Computers, 2008, 25(9): 2601-2606. (in Chinese)
    [15] 徐蓉,姜峰,姚鸿勋. 流形学习概述[J]. 智能系统学报,2006,1(1): 44-51. XU Rong,JIANG Feng,YAO Hongxun. Overview of manifold learning[J]. CAAI Transactions on Intelligent Systems,2006,1(1): 44-51. (in Chinese

    XU Rong, JIANG Feng, YAO Hongxun. Overview of manifold learning[J]. CAAI Transactions on Intelligent Systems, 2006, 1(1): 44-51. (in Chinese)
    [16] LEE J M,YOO C,CHOI S W,et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science,2004,59(1): 223-234. doi: 10.1016/j.ces.2003.09.012
    [17] SHAO Renping,HU Wentao,WANG Yayun,et al. The fault feature extraction and classification of gear using principal component analysis and kernel principal component analysis based on the wavelet packet transform[J]. Measurement,2014,54: 118-132. doi: 10.1016/j.measurement.2014.04.016
    [18] 邓晓刚,田学民. 一种基于KPCA的非线性故障诊断方法[J]. 山东大学学报(工学版),2005,35(3): 103-106. DENG Xiaogang,TIAN Xuemin. Nonlinear process fault diagnosis method using kernel principal component analysis[J]. Journal of Shandong University (Engineering Science),2005,35(3): 103-106. (in Chinese

    DENG Xiaogang, TIAN Xuemin. Nonlinear process fault diagnosis method using kernel principal component analysis[J]. Journal of Shandong University (Engineering Science), 2005, 35(3): 103-106. (in Chinese)
    [19] 李巍华,廖广兰,史铁林. 核函数主元分析及其在齿轮故障诊断中的应用[J]. 机械工程学报,2003,39(8): 65-70. LI Weihua,LIAO Guanglan,SHI Tielin. Kernel principal component analysis and its application in gear fault diagnosis[J]. Chinese Journal of Mechanical Engineering,2003,39(8): 65-70. (in Chinese doi: 10.3321/j.issn:0577-6686.2003.08.012

    LI Weihua, LIAO Guanglan, SHI Tielin. Kernel principal component analysis and its application in gear fault diagnosis[J]. Chinese Journal of Mechanical Engineering, 2003, 39(8): 65-70. (in Chinese) doi: 10.3321/j.issn:0577-6686.2003.08.012
    [20] HEARST M A,DUMAIS S T,OSUNA E,et al. Support vector machines[J]. IEEE Intelligent Systems and Their Applications,1998,13(4): 18-28. doi: 10.1109/5254.708428
    [21] 祁亨年. 支持向量机及其应用研究综述[J]. 计算机工程,2004,30(10): 6-9. QI Hengnian. Support vector machines and application research overview[J]. Computer Engineering,2004,30(10): 6-9. (in Chinese doi: 10.3969/j.issn.1000-3428.2004.10.003

    QI Hengnian. Support vector machines and application research overview[J]. Computer Engineering, 2004, 30(10): 6-9. (in Chinese) doi: 10.3969/j.issn.1000-3428.2004.10.003
    [22] 韩松,徐林森. 基于主成分分析和支持向量机分类模型的滚动轴承故障诊断[J]. 科学技术与工程,2021,21(8): 3153-3158. HAN Song,XU Linsen. Fault diagnosis of rolling bearing based on classification model of principal component analysis and support vector machine[J]. Science Technology and Engineering,2021,21(8): 3153-3158. (in Chinese

    HAN Song, XU Linsen. Fault diagnosis of rolling bearing based on classification model of principal component analysis and support vector machine[J]. Science Technology and Engineering, 2021, 21(8): 3153-3158. (in Chinese)
    [23] COSTA M D,PENG C K,GOLDBERGER A L. Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures[J]. Cardiovascular Engineering,2008,8(2): 88-93. doi: 10.1007/s10558-007-9049-1
  • 加载中
图(16)
计量
  • 文章访问数:  140
  • HTML浏览量:  89
  • PDF量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-21
  • 网络出版日期:  2023-10-27

目录

    /

    返回文章
    返回