Inter-shaft bearing fault diagnosis method based on generalized refined composite multiscale quantum entropy and kernel principal component analysis
-
摘要:
针对中介轴承振动信号传递到机匣测表面上路径复杂,导致故障特征提取及识别困难等问题,提出了一种基于广义精细复合多尺度量子熵(generalized refined composite multiscale quantum entropy, GRCMQE)、核主成分分析(kernel principal component analysis, KPCA)与参数优化支持向量机的中介轴承故障诊断方法。该方法首先采用GRCMQE从振动信号中提取故障特征,构建高维故障特征集。其次,采用KPCA方法对高维特征数据降维,得到低维流形特征。然后,将得到的特征输入到基于交叉验证优化的支持向量机(cross validation- support vector machine, CV-SVM)中,完成故障模式识别。最后,在中介轴承故障数据集上对所提出的方法进行测试,结果表明该方法能够有效实现中介轴承不同故障类型的识别,并且故障识别精度达到98.33%。
-
关键词:
- 中介轴承 /
- 振动信号 /
- 广义精细复合多尺度量子熵 /
- 核主成分分析 /
- 故障诊断
Abstract:In view of the problems of complex paths of inter-shaft bearing vibration signal transmission to the measurement surface of the magazine, which lead to difficulties in fault feature extraction and identification, a fault diagnosis method based on generalized refined composite multiscale quantum entropy (GRCMQE), kernel principal component analysis (KPCA) and parameter optimization support vector machine was proposed for inter-shaft bearing fault diagnosis. Firstly, GRCMQE was used to extract fault features from vibration signals, and high-dimensional fault feature sets were constructed. Secondly, KPCA method was utilized to reduce the dimension of high-dimensional feature data to obtain low dimensional manifold features. Then, the obtained features were input into the support vector machine based on cross validation to complete the fault pattern recognition. Finally, the proposed method was tested on the intermediate bearing fault data set, and the results showed that the method can effectively identify different fault types of intermediate bearing, with the fault identification accuracy up to 98.33%.
-
-
[1] 邓四二,付金辉,王燕霜,等. 航空发动机滚动轴承-双转子系统动态特性分析[J]. 航空动力学报,2013,28(1): 195-204. DENG Sier,FU Jinhui,WANG Yanshuang,et al. Analysis on dynamic characteristics of aero-engine rolling bearing/dual-rotor system[J]. Journal of Aerospace Power,2013,28(1): 195-204. (in Chinese DENG Sier, FU Jinhui, WANG Yanshuang, et al . Analysis on dynamic characteristics of aero-engine rolling bearing/dual-rotor system[J]. Journal of Aerospace Power,2013 ,28 (1 ):195 -204 . (in Chinese)[2] 高朋,侯磊,陈予恕. 双转子-中介轴承系统非线性振动特性[J]. 振动与冲击,2019,38(15): 1-10. GAO Peng,HOU Lei,CHEN Yushu. Nonlinear vibration characteristics of a dual-rotor system with inter-shaft bearing[J]. Journal of Vibration and Shock,2019,38(15): 1-10. (in Chinese GAO Peng, HOU Lei, CHEN Yushu . Nonlinear vibration characteristics of a dual-rotor system with inter-shaft bearing[J]. Journal of Vibration and Shock,2019 ,38 (15 ):1 -10 . (in Chinese)[3] 田晶,周杰,王术光,等. 基于自适应双稳态随机共振的中介轴承故障诊断方法[J]. 航空动力学报,2019,34(10): 2237-2245. TIAN Jing,ZHOU Jie,WANG Shuguang,et al. Fault diagnosis method of inter-shaft bearing based on adaptive bistable stochastic resonance[J]. Journal of Aerospace Power,2019,34(10): 2237-2245. (in Chinese TIAN Jing, ZHOU Jie, WANG Shuguang, et al . Fault diagnosis method of inter-shaft bearing based on adaptive bistable stochastic resonance[J]. Journal of Aerospace Power,2019 ,34 (10 ):2237 -2245 . (in Chinese)[4] 赵志宏,杨绍普. 一种基于样本熵的轴承故障诊断方法[J]. 振动与冲击,2012,31(6): 136-140,154. ZHAO Zhihong,YANG Shaopu. Sample entropy-based roller bearing fault diagnosis method[J]. Journal of Vibration and Shock,2012,31(6): 136-140,154. (in Chinese ZHAO Zhihong, YANG Shaopu . Sample entropy-based roller bearing fault diagnosis method[J]. Journal of Vibration and Shock,2012 ,31 (6 ):136 -140, 154 . (in Chinese)[5] 田晶,王英杰,王志,等. 基于EEMD与空域相关降噪的滚动轴承故障诊断方法[J]. 仪器仪表学报,2018,39(7): 144-151. TIAN Jing,WANG Yingjie,WANG Zhi,et al. Fault diagnosis for rolling bearing based on EEMD and spatial correlation denoising[J]. Chinese Journal of Scientific Instrument,2018,39(7): 144-151. (in Chinese TIAN Jing, WANG Yingjie, WANG Zhi, et al . Fault diagnosis for rolling bearing based on EEMD and spatial correlation denoising[J]. Chinese Journal of Scientific Instrument,2018 ,39 (7 ):144 -151 . (in Chinese)[6] RICHMAN J S,MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology Heart and Circulatory Physiology,2000,278(6): 2039-2049. doi: 10.1152/ajpheart.2000.278.6.H2039 [7] COSTA M,GOLDBERGER A L,PENG C K. Multiscale entropy analysis of complex physiologic time series[J]. Physical Review Letters,2002,89(6): 068102.1-068102.4. [8] 王振亚,姚立纲. 广义精细复合多尺度样本熵与流形学习相结合的滚动轴承故障诊断方法[J]. 中国机械工程,2020,31(20): 2463-2471. WANG Zhenya,YAO Ligang. Rolling bearing fault diagnosis method based on generalized refined composite multiscale sample entropy and manifold learning[J]. China Mechanical Engineering,2020,31(20): 2463-2471. (in Chinese WANG Zhenya, YAO Ligang . Rolling bearing fault diagnosis method based on generalized refined composite multiscale sample entropy and manifold learning[J]. China Mechanical Engineering,2020 ,31 (20 ):2463 -2471 . (in Chinese)[9] SERGI A,GIAQUINTA P. Linear quantum entropy and non-hermitian hamiltonians[J]. Entropy,2016,18(12): 451. doi: 10.3390/e18120451 [10] AI Yanting,TIAN Bowen,TIAN Jing,et al. Acoustic emission signal feature extraction of inter-shaft bearing based on quantum entropy[C]//2019 Prognostics and System Health Management Conference. Piscataway,US: IEEE,2019: 1-5. [11] 刘丽丽,田晶,刘广鑫,等. 基于多尺度量子熵的中介轴承声发射信号故障特征提取技术研究[J]. 沈阳航空航天大学学报,2020,37(2): 1-9. LIU Lili,TIAN Jing,LIU Guangxin,et al. Research on fault feature extraction technology of acoustic emission signal of inter-shaft bearing based on multi-scale quantum entropy[J]. Journal of Shenyang Aerospace University,2020,37(2): 1-9. (in Chinese LIU Lili, TIAN Jing, LIU Guangxin, et al . Research on fault feature extraction technology of acoustic emission signal of inter-shaft bearing based on multi-scale quantum entropy[J]. Journal of Shenyang Aerospace University,2020 ,37 (2 ):1 -9 . (in Chinese)[12] MA Ping,ZHANG Hongli,FAN Wenhui,et al. A diagnosis framework based on domain adaptation for bearing fault diagnosis across diverse domains[J]. ISA Transactions,2020,99: 465-478. doi: 10.1016/j.isatra.2019.08.040 [13] COSTA M D,GOLDBERGER A L. Generalized multiscale entropy analysis: application to quantifying the complex volatility of human heartbeat time series[J]. Entropy,2015,17(3): 1197-1203. doi: 10.3390/e17031197 [14] 胡洁. 高维数据特征降维研究综述[J]. 计算机应用研究,2008,25(9): 2601-2606. HU Jie. Survey on feature dimension reduction for high-dimensional data[J]. Application Research of Computers,2008,25(9): 2601-2606. (in Chinese HU Jie . Survey on feature dimension reduction for high-dimensional data[J]. Application Research of Computers,2008 ,25 (9 ):2601 -2606 . (in Chinese)[15] 徐蓉,姜峰,姚鸿勋. 流形学习概述[J]. 智能系统学报,2006,1(1): 44-51. XU Rong,JIANG Feng,YAO Hongxun. Overview of manifold learning[J]. CAAI Transactions on Intelligent Systems,2006,1(1): 44-51. (in Chinese XU Rong, JIANG Feng, YAO Hongxun . Overview of manifold learning[J]. CAAI Transactions on Intelligent Systems,2006 ,1 (1 ):44 -51 . (in Chinese)[16] LEE J M,YOO C,CHOI S W,et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science,2004,59(1): 223-234. doi: 10.1016/j.ces.2003.09.012 [17] SHAO Renping,HU Wentao,WANG Yayun,et al. The fault feature extraction and classification of gear using principal component analysis and kernel principal component analysis based on the wavelet packet transform[J]. Measurement,2014,54: 118-132. doi: 10.1016/j.measurement.2014.04.016 [18] 邓晓刚,田学民. 一种基于KPCA的非线性故障诊断方法[J]. 山东大学学报(工学版),2005,35(3): 103-106. DENG Xiaogang,TIAN Xuemin. Nonlinear process fault diagnosis method using kernel principal component analysis[J]. Journal of Shandong University (Engineering Science),2005,35(3): 103-106. (in Chinese DENG Xiaogang, TIAN Xuemin . Nonlinear process fault diagnosis method using kernel principal component analysis[J]. Journal of Shandong University (Engineering Science),2005 ,35 (3 ):103 -106 . (in Chinese)[19] 李巍华,廖广兰,史铁林. 核函数主元分析及其在齿轮故障诊断中的应用[J]. 机械工程学报,2003,39(8): 65-70. LI Weihua,LIAO Guanglan,SHI Tielin. Kernel principal component analysis and its application in gear fault diagnosis[J]. Chinese Journal of Mechanical Engineering,2003,39(8): 65-70. (in Chinese doi: 10.3321/j.issn:0577-6686.2003.08.012 LI Weihua, LIAO Guanglan, SHI Tielin . Kernel principal component analysis and its application in gear fault diagnosis[J]. Chinese Journal of Mechanical Engineering,2003 ,39 (8 ):65 -70 . (in Chinese) doi: 10.3321/j.issn:0577-6686.2003.08.012[20] HEARST M A,DUMAIS S T,OSUNA E,et al. Support vector machines[J]. IEEE Intelligent Systems and Their Applications,1998,13(4): 18-28. doi: 10.1109/5254.708428 [21] 祁亨年. 支持向量机及其应用研究综述[J]. 计算机工程,2004,30(10): 6-9. QI Hengnian. Support vector machines and application research overview[J]. Computer Engineering,2004,30(10): 6-9. (in Chinese doi: 10.3969/j.issn.1000-3428.2004.10.003 QI Hengnian . Support vector machines and application research overview[J]. Computer Engineering,2004 ,30 (10 ):6 -9 . (in Chinese) doi: 10.3969/j.issn.1000-3428.2004.10.003[22] 韩松,徐林森. 基于主成分分析和支持向量机分类模型的滚动轴承故障诊断[J]. 科学技术与工程,2021,21(8): 3153-3158. HAN Song,XU Linsen. Fault diagnosis of rolling bearing based on classification model of principal component analysis and support vector machine[J]. Science Technology and Engineering,2021,21(8): 3153-3158. (in Chinese HAN Song, XU Linsen . Fault diagnosis of rolling bearing based on classification model of principal component analysis and support vector machine[J]. Science Technology and Engineering,2021 ,21 (8 ):3153 -3158 . (in Chinese)[23] COSTA M D,PENG C K,GOLDBERGER A L. Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures[J]. Cardiovascular Engineering,2008,8(2): 88-93. doi: 10.1007/s10558-007-9049-1