Research on starting modeling and control law of variable cycle engine
-
摘要:
为研究双外涵变循环发动机起动控制规律,基于部件级建模方法,考虑可调部件变几何特性处理和旋转部件低转速特性外推,采用流量平衡方法构建共同工作方程组,建立变循环发动机起动数学模型。通过改变单个几何调节量,包括风扇、核心机驱动风扇(CDFS)和压气机导叶角度,低压涡轮导向器面积,前涵道引射器(FVABI)面积、后涵道引射器(RVABI)面积和尾喷管喉道面积,采用单因素分析方法,研究其对起动性能的影响,获得几何变量影响矩阵,并基于此开展起动控制规律研究。研究表明:控制规律的风扇导叶、核心机驱动风扇导叶、前涵道引射器和喷管均置于全关闭位置,低压涡轮导向器处于最大位置,后涵道引射器面积和压气机导叶角度随转速下降。经试验验证,起动控制规律正确可行,变循环发动机起动成功。研究结论对变循环发动机起动控制规律和起动性能设计提供了参考。
Abstract:To research the starting control law of double-culvert variable cycle engine, based on the modeling method of component, the method of air mass flow balance was used to establish corresponding common working equations, and the double-culvert variable cycle engine starting model was established by considering the processing method of variable geometry characteristics for adjustable components and the low speed characteristic extrapolation method of the rotating components. Through using single factor analysis method, it changed single geometry adjustments, including the guide vane angle of fan, core driven fan stage (CDFS) and compressor, the throat area of low pressure turbine, the area of front variable area bypass injector (FVABI), rear variable area bypass injector (RVABI) and exhaust nozzle, and studied the influence on the starting performance of engine to obtain the influence matrix of geometric variables. Based on this, starting control law was researched. Research showed that in this starting control law, the guide vane angle of fan and CDFS, FVABI and nozzle were kept at closed position, and the throat area of low pressure turbine kept at the max position, whilst the area of RVABI and the guide vane angle of compressor decreased with the increase of rotation speed. Test result showed that, the starting control law was correct and feasible, and variable cycle engine started successfully. The conclusion provides a reference for variable cycle engine control law and starting performance design.
-
表 1 部件幂指数选值
Table 1. Component power exponent selection
部件 q m n 风扇 1 2 0.1 CDFS 1 2 0.15 压气机 1 2 0.2 高压涡轮 −0.015 0.65 0.025 低压涡轮 −0.1 0.45 0.008 表 2 部件变几何特性影响系数
Table 2. Component variable geometric characteristic influence coefficient
部件 $ {k_\pi } $ $ {k_W} $ $ {k_\eta } $ 风扇 1.1 2.1 0.11 CDFS 1.4 1.4 0.15 压气机 1.9 1.0 0.19 低压涡轮 1.3 0.12 表 3 几何变量影响矩阵
Table 3. Influence matrix of geometric variables
变量 调节方向 $\dot n_{\rm{c}}$ $\dot n_{\rm{f}}$ Smf Smcd Smc 风扇导叶角度 ↑ — ↓ ↓ — — CDFS导叶角度 ↑ ↓ ↓ — ↓ — 压气机导叶角度 ↑ ~ ~ — ↑ ↑ 涡轮导向器面积 ↑ ↑ ↓ ↑ ↓ — 前引射器面积 ↑ — — ↑ ↑ — 后引射器面积 ↑ ~ ~ ↓ ↓ — 尾喷管喉道面积 ↓ ↓ ↓ ↓ ↓ — 注:↑变大,↓变小,—不变,~变化不单调。 -
[1] 刘洪波,王荣桥. 变循环发动机总体结构和模式转换机构研究[J]. 航空发动机,2008,34(3): 1-5.LIU Hongbo,WANG Rongqiao. Investigation of general structure and mode transition mechanism of variable cycle engine[J]. Aeroengine,2008,34(3): 1-5. (in Chinese) [2] KAUSER F. An overview of gas turbine propulsion technology[R]. AIAA 94-2828, 1994. [3] VYVEY P, BOSSCHAERTS W, FERNANDEZ VILLACE V, et al. Study of an airbreathing variable cycle engine[R]. AIAA 2011-5758, 2011. [4] 刘增文,王占学,黄红超,等. 变循环发动机性能数值模拟[J]. 航空动力学报,2010,25(6): 1310-1315. doi: 10.13224/j.cnki.jasp.2010.06.019LIU Zengwen,WANG Zhanxue,HUANG Hongchao,et al. Numerical simulation on performance of variable cycle engines[J]. Journal of Aerospace Power,2010,25(6): 1310-1315. (in Chinese) doi: 10.13224/j.cnki.jasp.2010.06.019 [5] 苟学中. 变循环发动机建模及控制规律研究[D]. 南京: 南京航空航天大学, 2012.GOU Xuezhong. Research on modeling and control laws for variable cycle engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese) [6] 王韶昌. 变循环发动机部件级建模技术研究[D]. 南京: 南京航空航天大学, 2017.WANG Shaochang. Research on component level modeling for variable cycle engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. (in Chinese) [7] 张睿. 变循环发动机建模及气动性能研究[D]. 南京: 南京航空航天大学, 2018.ZHANG Rui. Research on modeling and aerodynamic performance for variable cycle engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese) [8] 吴虎,冯维林. 某型涡扇发动机起动过程数值模拟[J]. 航空动力学报,2007,22(12): 2068-2072. doi: 10.13224/j.cnki.jasp.2007.12.020WU Hu,FENG Weilin. Numerical simulation of the start-up process of augmented turbofan engines[J]. Journal of Aerospace Power,2007,22(12): 2068-2072. (in Chinese) doi: 10.13224/j.cnki.jasp.2007.12.020 [9] MUNSON B R. Fundamentals of fluid mechanics[M]. 6th ed. Hoboken, NJ: Wiley, 2009. [10] SONG T W,KIM T S,KIM J H,et al. Performance prediction of axial flow compressors using stage characteristics and simultaneous calculation of interstage parameters[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,2001,215(1): 89-98. doi: 10.1243/0957650011536598 [11] 雷积红,陈策,李军,等. 基于BP神经网络的涡扇发动机部件特性研究[J]. 燃气涡轮试验与研究,2003,16(4): 15-17. doi: 10.3969/j.issn.1672-2620.2003.04.005LEI Jihong,CHEN Ce,LI Jun,et al. A study of turbofan component characteristic based on back-propagation network[J]. Gas Turbine Experiment and Research,2003,16(4): 15-17. (in Chinese) doi: 10.3969/j.issn.1672-2620.2003.04.005 [12] STEINKE R J. STGSTK: a computer code for predicting multistage axial flow compressor performance by a meanline stage stacking method[R]. NASA-TP-2020, 1982 [13] SIEROS G, STAMATIS A, MATHIOUDAKIS K. Analytical representation of jet engine turbomachinery components characteristic for use in engine performance modeling and diagnosis[R]. ISABE95-7030, 1995. [14] 李志刚,陶增元,丁康乐,等. 一种改进的变几何压气机特性计算方法[J]. 航空发动机,2004,30(4): 7-9.LI Zhigang,TAO Zengyuan,DING Kangle,et al. Simulation of variable geometry compressor characteristics[J]. Aeroengine,2004,30(4): 7-9. (in Chinese) [15] 林雪平. 变几何发动机稳态性能计算研究[D]. 西安: 西北工业大学, 2004.LIN Xueping. Study on steady-state performance calculation of variable geometry engine[D]. Xi’an: Northwestern Polytechnical University, 2004. (in Chinese) [16] SIRINOGLOU A. Implemantation of variable geometry for gas turbine performance[D]. Cranfield, Bedfordshire, UK: Cranfield Institute of Technology, 1992. [17] MUIR D E,SARAVANAMUTTOO H I H,MARSHALL D J. Health monitoring of variable geometry gas turbines for the Canadian navy[J]. Journal of Engineering for Gas Turbines and Power,1989,111(2): 244-250. doi: 10.1115/1.3240243 [18] JOACHIM K. GasTurb 13—design and off-design performance of gas turbines[M]. Dachau, Germany: Gasturb Company, 2017. [19] AINLEY D G, MATHESON G C R. A method of performance estimation for aixal-flow turbines[R]. London: Her Majesty’s Stationery Office, 1957.