留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无水甲醇质量比对紧凑型预冷器的结霜和抑霜性能的影响

韦宏 杨学森 李治达 郭晓峰 唐中富 付超 董威

韦宏, 杨学森, 李治达, 等. 无水甲醇质量比对紧凑型预冷器的结霜和抑霜性能的影响[J]. 航空动力学报, 2023, 38(3):596-606 doi: 10.13224/j.cnki.jasp.20210499
引用本文: 韦宏, 杨学森, 李治达, 等. 无水甲醇质量比对紧凑型预冷器的结霜和抑霜性能的影响[J]. 航空动力学报, 2023, 38(3):596-606 doi: 10.13224/j.cnki.jasp.20210499
WEI Hong, YANG Xuesen, LI Zhida, et al. Effects of mass ratio of anhydrous methanol on frosting and defrosting performance of compact precooler[J]. Journal of Aerospace Power, 2023, 38(3):596-606 doi: 10.13224/j.cnki.jasp.20210499
Citation: WEI Hong, YANG Xuesen, LI Zhida, et al. Effects of mass ratio of anhydrous methanol on frosting and defrosting performance of compact precooler[J]. Journal of Aerospace Power, 2023, 38(3):596-606 doi: 10.13224/j.cnki.jasp.20210499

无水甲醇质量比对紧凑型预冷器的结霜和抑霜性能的影响

doi: 10.13224/j.cnki.jasp.20210499
基金项目: 中国民用飞机专项研究基金 (MJ-2016-D-35)
详细信息
    作者简介:

    韦宏(1988-),男,博士,主要从事航空发动机热端部件冷却技术及高超声速飞行器预冷器等方面的研究

    通讯作者:

    董威(1970-),男,教授,博士,主要从事飞机及气动加热及热防护、发动机结冰与防冰等方面的研究。E-mail:wdong@sjtu.edu.cn

  • 中图分类号: V231.1

Effects of mass ratio of anhydrous methanol on frosting and defrosting performance of compact precooler

  • 摘要:

    在主流来流的速度值、湿度值和温度值分别为10 m/s、6.4 g/kg 和50 ℃的实验条件下,对微管式紧凑型预冷器的结霜和抑霜性能进行了实验研究。在抑霜实验工况中,采用无水甲醇作为抑霜的有机溶剂,且在抑霜实验过程中喷射了三个不同质量比(0.75、1.0和1.25)的无水甲醇对预冷器进行抑霜。对不同实验工况的结霜和抑霜性能、压力损失系数、预冷器管束的壁面温度和预冷器的换热率进行了详细地分析。实验结果表明,在进行结霜实验时,当低温冷却剂流经预冷器的微细管束内部时,在预冷器的外侧会快速地凝结霜层, 且霜层随着实验时间的增长而逐渐累积。然而,一旦向主流来流中喷射了三个不同质量比的无水甲醇之后,会产生非常明显的抑霜效果,主流的压力损失系数显著下降且预冷器的换热率明显提高。此外,预冷器微细管束的壁面温度也显著的增大了,其壁面温度均高于水的冰点,这是喷射无水甲醇能够产生抑霜效果的直接原因。在向主流喷射三个不同质量比的无水甲醇的抑霜实验中,当喷射的无水甲醇的质量比为1.0时的抑霜效果最佳。此外,根据对抑霜实验结果进行分析,可以进一步地推测:实现最优抑霜性能的最佳无水甲醇质量比可能介于1.0~1.25之间。

     

  • 图 1  微细管式预冷器三维视图

    Figure 1.  Three-dimensional view of the microtubule precooler

    图 2  预冷器和实验段的三维装配图

    Figure 2.  Three-dimensional assembly drawing of the precooler and the experimental section

    图 3  实验工况a-1在第600 s时的结果

    Figure 3.  Results of experimental condition a-1 at 600 s

    图 4  实验工况a-2在第600 s时的实验结果

    Figure 4.  Results of experimental condition a-2 at 600 s

    图 5  实验工况a-3在第600 s时的实验结果

    Figure 5.  Results of experimental condition a-3 at 600 s

    图 6  实验工况a-4在第600 s时的实验结果

    Figure 6.  Results of experimental condition a-4 at 600 s

    图 7  结霜和抑霜实验工况的压力损失系数分布曲线

    Figure 7.  Distribution curves of the pressure loss coefficient under the frosting and defrosting experimental conditions

    图 8  结霜和抑霜实验工况的壁面温度分布情况

    Figure 8.  Distributions of wall surface temperature under the frosting and defrosting experimental conditions

    图 9  结霜和抑霜实验工况的换热率分布曲线

    Figure 9.  Distribution curves of the heat transfer rate under the frosting and defrosting experimental conditions

    表  1  紧凑型预冷器结霜和抑霜实验工况

    Table  1.   Frosting and defrosting experiment condition of compact precooler

    实验工况
    编号
    实验主流
    温度/℃
    主流速度/
    (m/s)
    主流湿度/ (g/kg)是否喷射
    甲醇
    质量比Mr
    a-1结霜0
    a-20.75
    a-3抑霜50106.41.0
    a-41.25
    下载: 导出CSV
  • [1] SATO T,TANATSUGU N,KOBAYASHI H,et al. Countermeasures against the icing problem on the ATREX precooler[J]. Acta Astronautica,2004,54(9): 671-686. doi: 10.1016/S0094-5765(03)00239-X
    [2] VARVILL R. Heat exchanger development at Reaction Engines Ltd.[J]. Acta Astronautica, 2010, 66: 1468-1474.
    [3] SATO T,H,TAGUCHI H,KOBAYASHIA T,et al. Development study of precooled-cycle hypersonic turbojet engine for flight demonstration[J]. Acta Astronautica,2007,61: 367-375. doi: 10.1016/j.actaastro.2007.01.012
    [4] SATO T,TAGUCHI H,KOBAYASHI H,et al. Development study of a precooled turbojet engine[J]. Acta Astronautica,2010,66: 1169-1176. doi: 10.1016/j.actaastro.2009.10.006
    [5] FUJITA K,SAWAI S,KOBAYASHI H,et al. Precooled turbojet engine flight experiment using balloon-based operation vehicle[J]. Acta Astronautica,2006,59: 263-270. doi: 10.1016/j.actaastro.2006.02.023
    [6] TSUCHIYA T,TAKENAKA Y,TAGUCHI H. Multidisciplinary design optimization for hypersonic experimental vehicle[J]. AIAA Journal,2007,45(12): 3021-3023. doi: 10.2514/1.35440
    [7] HARADA K, TANATSUGU N, SATO T. Development study on precooler for ATREX engine[R]. AIAA 1999-4897, 1999.
    [8] HARADA K, TANATSUGU N, SATO T. Development study of a precooler for the air-turboramjet expander-cycle engine[J]. Journal of Propulsion and Power, 2001, 17(6): 1233-1238.
    [9] HARADA K, KIMURA T, SATO T. Improvement of performance of the precooled cycle engine spoiled by icing[R]. AIAA 2001-1840, 2001.
    [10] HARADA K. Study on frost formation in heat exchanger using cryogenic coolant[D]. Tokyo: The University of Tokyo, 1999. (in Japanese)
    [11] FUKIBA K,INOUE S,OHKUBO H,et al. New defrosting method using jet impingement for precooled turbojet engines[J]. Journal of Thermophysics and Heat Transfer,2009,23(3): 1-10.
    [12] QIN Y,DONG B,LI W Z. Experimental study of the frosting characteristics of water on a cold surface in the magnetic field[J]. Experimental Thermal and Fluid Science,2020,114: 110044.1-110044.12.
    [13] AMER M,WANG C C. Experimental investigation on defrosting of a cold flat plate via ultrasonic vibration under natural convection[J]. Applied Thermal Engineering,2020,179: 115729.1-115729.16.
    [14] KIM K,KIM M H,KIM D R,et al. Thermal performance of microchannel heat exchangers according to the design parameters under the frosting conditions[J]. International Journal of Heat and Mass Transfer,2014,71: 626-632. doi: 10.1016/j.ijheatmasstransfer.2013.12.060
    [15] JIA Y T,XU X H,LI Y L,et al. Experimental studies on frost and defrost of fine tube bundles under coolant temperature between −20 and −58 ℃[J]. International Journal of Heat and Mass Transfer,2018,116: 617-620. doi: 10.1016/j.ijheatmasstransfer.2017.09.031
    [16] 贾云涛. 细管束低温冷却空气的流动换热与表面结霜的研究[D]. 北京: 清华大学, 2017.

    JIA Yuntao. Researches on the flow, heat transfer and frosting for air cooling by mini-tube bundle at very low temperature[D]. Beijing: Tsinghua University, 2017. (in Chinese)
    [17] 邹正平,刘火星,唐海龙,等. 高超声速航空发动机强预冷技术研究[J]. 航空学报,2015,36(8): 2544-2562. doi: 10.7527/S1000-6893.2015.0144

    ZOU Zhengping,LIU Huoxing,TANG Hailong,et al. Precooling technology study of hypersonic aeroengine[J]. Acta Aeronautica et Astronautica Sinica,2015,36(8): 2544-2562. (in Chinese) doi: 10.7527/S1000-6893.2015.0144
    [18] 邹正平,王一帆,额日其太,等. 高超声速强预冷航空发动机技术研究进展[J]. 航空发动机,2021,47(4): 8-21.

    ZOU Zhengping,WANG Yifan,ERI Qitai,et al. Research progress on hypersonic precooled airbreathing engine technology[J]. Aeroengine,2021,47(4): 8-21. (in Chinese)
    [19] 姚李超,付超,张俊强,等. 非定常来流压力下基于DMD方法的预冷器换热特性[J]. 航空动力学报,2020,35(10): 2064-2077.

    YAO Lichao,FU Chao,ZHANG Junqiang,et al. Heat transfer performance of pre-cooler under unsteady inflow pressure condition using dynamic mode decomposition method[J]. Journal of Aerospace Power,2020,35(10): 2064-2077. (in Chinese)
    [20] LI H, LIU H X, ZOU Z P. Experimental study and performance analysis of high-performance micro-channel heat exchanger for hypersonic precooled aero-engine[J]. Applied Thermal Engineering, 2021, 182: 116108.1-116108.12.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  124
  • HTML浏览量:  63
  • PDF量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-08
  • 网络出版日期:  2023-01-02

目录

    /

    返回文章
    返回