留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对转压气机中机匣处理的非定常影响

郭彦超 高丽敏 茅晓晨 王磊

郭彦超, 高丽敏, 茅晓晨, 等. 对转压气机中机匣处理的非定常影响[J]. 航空动力学报, 2023, 38(3):685-697 doi: 10.13224/j.cnki.jasp.20210508
引用本文: 郭彦超, 高丽敏, 茅晓晨, 等. 对转压气机中机匣处理的非定常影响[J]. 航空动力学报, 2023, 38(3):685-697 doi: 10.13224/j.cnki.jasp.20210508
GUO Yanchao, GAO Limin, MAO Xiaochen, et al. Unsteady effect on casing treatment in counter-rotating axial flow compressor[J]. Journal of Aerospace Power, 2023, 38(3):685-697 doi: 10.13224/j.cnki.jasp.20210508
Citation: GUO Yanchao, GAO Limin, MAO Xiaochen, et al. Unsteady effect on casing treatment in counter-rotating axial flow compressor[J]. Journal of Aerospace Power, 2023, 38(3):685-697 doi: 10.13224/j.cnki.jasp.20210508

对转压气机中机匣处理的非定常影响

doi: 10.13224/j.cnki.jasp.20210508
基金项目: 国家科技重大专项(J2019-Ⅱ-0016-0037); 国家自然科学基金重大项目(51790512);西北工业大学博士论文创新基金(CX2022044)
详细信息
    作者简介:

    郭彦超(1993-),男,博士生,研究领域为叶轮机械气动热力学。E-mail:guo_yc@mail.nwpu.edu.cn

    通讯作者:

    高丽敏(1973-),女,教授、博士生导师,博士,研究领域为叶轮机械气动热力学。E-mail:gaolm@nwpu.edu.cn

  • 中图分类号: V231.3

Unsteady effect on casing treatment in counter-rotating axial flow compressor

  • 摘要:

    为探究不同形式的机匣处理扩稳机理和损失产生区别,以某两级对转压气机(CRAC)为研究对象,通过非定常数值模拟方法开展了自循环机匣处理(SRCT)和轴向槽机匣处理(ASCT)扩稳机理的研究。结果表明:SRCT和ASCT在近失速点均显著提高失速裕度和总压比,在峰值效率点附近增加效率损失;机匣处理通过作用于叶顶泄漏流和抑制压力势流减弱转子间动-动干涉效应;机匣处理槽内流场与转子相对位置相关,转子周期性的扫掠机匣处理槽增加了轴向槽内流动的非定常性,机匣处理槽内流动掺混是效率下降的主要原因。

     

  • 图 1  两级对转压气机

    Figure 1.  Two-stage counter-rotating axial flow compressor

    图 2  网格示意图

    Figure 2.  Schematic diagram of grid

    图 3  网格无关性验证

    Figure 3.  Grid independence verification

    图 4  数值方法校核

    Figure 4.  Verification of numerical methods

    图 5  ASCT和SRCT结构示意图

    Figure 5.  Schematic diagram of SRCT and ASCT

    图 6  ASCT和SRCT网格示意图

    Figure 6.  Schematic diagram of grids of SRCT and ASCT

    图 7  对转压气机特性线

    Figure 7.  Characteristic curves of the counter-rotating axial flow compressor

    图 8  NSP2工况下R2叶顶泄漏涡随时间变化

    Figure 8.  Variation of R2 blade tip leakage vortex with time under the NSP2 condition

    图 9  PEP和NSP1工况下R2转子99%叶高处叶表Cp随时间的变化

    Figure 9.  Variation of the blade surface Cp at 99% blade span of R2 with time under the PEP and NSP1 conditions

    图 10  NSP1工况下R1和R2转子99%叶高处Cp云图分布

    Figure 10.  Cp contour distributions at 99% blade span of R1 and R2 under the NSP1 condition

    图 11  NSP1工况下不同时刻R1转子99%叶高处叶表Cp分布

    Figure 11.  Cp distribution of R1 at 99% blade span at different times under the NSP1 condition

    图 12  不同流量工况下叶表Su分布

    Figure 12.  Su distribution of blade surface under the different mass flow rate conditions

    图 13  NSP1工况下R2叶顶时均三维流线分布

    Figure 13.  Three-dimensional streamlines distribution at the tip of R2 under the NSP1 condition

    图 14  NSP1工况下R2进口气流角沿叶高变化

    Figure 14.  Distribution of R2 inlet flow angle under the NSP1 condition

    图 15  PEP工况下子午面熵的时均结果

    Figure 15.  Time-average result of entropy on z-r plane under the PEP condition

    图 16  PEP工况下R2转子99%叶高熵的时均结果

    Figure 16.  Time-average result of entropy at 99% blade span of R2 under the PEP condition

    图 17  PEP工况下CT槽内的流场

    Figure 17.  Flow fields in the CT slot under the PEP condition

    图 18  PEP工况下CT中不同时刻R2的TLF速度分布

    Figure 18.  Axial distribution of TLF of R2 at different times in the CT under the PEP condition

    表  1  对转压气机主要设计参数

    Table  1.   Main design parameters of the counter-rotating axial flow compressor

    设计参数IGVR1R2OGV
    转速/103 (r/min)8−8
    叶顶间隙/mm0.50.5
    叶尖速度/(m/s)167.6167.6
    叶片数22192032
    轮毂比0.4850.641
    下载: 导出CSV
  • [1] VIJAYRAJ K, GOVARDHAN M. Aerodynamics of contra-rotating fans with swept blades[R]. ASME Paper GT2015-1383, 2015.
    [2] 韩少冰,张雯棋,钟兢军. 跨声速风扇转子叶尖小翼设计与扩稳机理研究[J]. 推进技术,2020,41(7): 1484-1492. doi: 10.13675/j.cnki.tjjs.190551

    HAN Shaobing,ZHANG Wenqi,ZHONG Jingjun. Research on design of blade tip winglet for transonicfan rotor and mechanism of stability enhancement[J]. Journal of Propulsion Technology,2020,41(7): 1484-1492. (in Chinese) doi: 10.13675/j.cnki.tjjs.190551
    [3] CHEN Y,YANG L,ZHONG J. Numerical study on endwall fence with varying geometrical parameters in a highly-loaded compressor cascade[J]. Aerospace Science and Technology,2019,94: 105390.1-105390.10.
    [4] MA S, CHU W, ZHANG H, et al. Impact of a combination of micro-vortex generator and boundary layer suction on performance in a high-load compressor cascade[R]. ASME Paper GT2018-75520, 2018.
    [5] SHI L,LIU B,NA Z,et al. Experimental investigation of a counter-rotating compressor with boundary layer suction[J]. Chinese Journal of Aeronautics,2015,28(4): 1044-1054. doi: 10.1016/j.cja.2015.05.003
    [6] KHALEGHI H. Parametric study of injector radial penetration on stalling characteristics of a transonic fan[J]. Aerospace Science and Technology,2017,66: 112-118. doi: 10.1016/j.ast.2017.02.020
    [7] LI J. Self-adaptive stability-enhancing technology with tip air injection in an axial flow compressor[J]. Journal of Turbomachinery,2017,139(1): 81-89.
    [8] 楚武利,卢新根,吴艳辉. 带周向槽机匣处理的压气机内部流动数值模拟与试验[J]. 航空动力学报,2006,21(1): 100-105. doi: 10.3969/j.issn.1000-8055.2006.01.019

    CHU Wuli,LU Xingen,WU Yanhui. Numerical and experimental investigations of the flow in a compressor with circumferential grooves[J]. Journal of Aerospace Power,2006,21(1): 100-105. (in Chinese) doi: 10.3969/j.issn.1000-8055.2006.01.019
    [9] DAY I J. Stall, surge, and 75 years of research[J]. Journal of Turbomachinery,2016,138(1): 1-16.
    [10] CHEN H, KOLEY S S, LI Y, et al. Systematic experimental evaluations aimed at optimizing the geometry of axial casing groove in a compressor[R]. ASME Paper GT2019-91050, 2019.
    [11] BRANDSTETTER C,WARTZEK F,WERNER J,et al. Unsteady measurements of periodic effects in a transonic compressor with casing treatments[J]. Journal of Turbomachinery,2016,138(5): 1-9.
    [12] HATHAWAY M D. Self-recirculating casing treatment concept for enhanced compressor performance[R]. ASME Paper GT2002-30368, 2002.
    [13] STRAZISAR A J, BRIGHT M M, THORP S, et al. Compressor stall control through endwall recirculation[R]. ASME Paper GT2004-54295, 2004.
    [14] KHALEGHI H. Effect of discrete endwall recirculation on the stability of a high-speed compressor rotor[J]. Aerospace Science and Technology,2014,37: 130-137. doi: 10.1016/j.ast.2014.05.009
    [15] KHALEGHI H. A new approach of endwall recirculation in axial compressors[J]. Aerospace Science and Technology,2020,98: 105704.1-105704.7.
    [16] KUMAR S S, CHOTALIA R J, JANA S, et al. Single stage axial compressor stability management with self-recirculating casing treatment[R]. AIAA 2019-0942, 2019.
    [17] 张皓光,安康,谭锋,等. 自循环机匣处理轴向位置影响扩稳能力的机理[J]. 航空动力学报,2017,32(4): 983-989. doi: 10.13224/j.cnki.jasp.2017.04.026

    ZHANG Haoguang,AN Kang,TAN Feng,et al. Mechanism of affecting ability of stability enhancement with varying axial position of self-recirculating casing treatment[J]. Journal of Aerospace Power,2017,32(4): 983-989. (in Chinese) doi: 10.13224/j.cnki.jasp.2017.04.026
    [18] LI Jichao,DU Juan,NAN Xi,et al. Coupling stability-enhancing mechanism with compact self-recirculating injection in an axial flow compressor[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,2016,230(7): 696-708. doi: 10.1177/0957650916659778
    [19] LI Jichao,DU Juan,LI Zhiyuan,et al. Stability enhancement with self-recirculating injection in axial flow compressor[J]. Journal of Turbomachinery,2018,140(7): 1001-1013.
    [20] GUINET C,INZENHOFER A,GÜMMER V. Influencing parameters of tip blowing interacting with rotor tip flow[J]. Journal of Turbomachinery,2017,139(2): 101-110.
    [21] 晏松,楚武利. 不同转速下自循环机匣处理对转子性能的影响[J]. 航空动力学报,2019,34(11): 2516-2528. doi: 10.13224/j.cnki.jasp.2019.11.024

    YAN Song,CHU Wuli. Effect of self-circulating treatment casing on rotor performance at different speeds[J]. Journal of Aerospace Power,2019,34(11): 2516-2528. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.11.024
    [22] PUNDHIR D S. A study of some factors affecting the effectiveness of casing treatment in contra-rotating axial compressor stage[J]. Indian Journal of Engineering and Materials Sciences,1994,1: 199-207.
    [23] MAO X,LIU B,ZHAO H. Numerical analysis of the circumferential grooves casing treatment in a counter-rotating axial flow compressor[J]. Applied Thermal Engineering,2018,130: 29-39. doi: 10.1016/j.applthermaleng.2017.11.044
    [24] MAO X,LIU B,TANG T,et al. The impact of casing groove location on the flow instability in a counter-rotating axial flow compressor[J]. Aerospace Science and Technology,2018,76: 250-259. doi: 10.1016/j.ast.2018.01.037
    [25] HEINRICH M, KHALEGHI H, FRIEBE C. Numerical investigation of circumferential groove casing treatment on a low speed contra-rotating fan[R]. ASME Paper GT2019-91705, 2019.
    [26] SUN X,DONG X,SUN D. Recent development of casing treatments for aero-engine compressors[J]. Chinese Journal of Aeronautics,2019,32(1): 1-36. doi: 10.1016/j.cja.2018.11.005
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  236
  • HTML浏览量:  43
  • PDF量:  239
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-12
  • 网络出版日期:  2022-11-24

目录

    /

    返回文章
    返回