Experiment of compact finned-tube air-fuel heat exchanger
-
摘要:
为实现航空发动机内部热环境与热沉的有效交互,探究换热元件的流动换热特性。以航空发动机燃油系统回油冷却换热器为例,开展了小管径矩形翅片管式空气-燃油换热器流动换热性能试验研究。试验采用高温燃油与常温空气两股工质在换热器中进行能量交换,探究换热器在不同工况下的流动与换热性能,获取矩形翅片管式换热单元管外流动换热经验关联式。结果表明:矩形翅片管式换热单元的表面传热系数约为相同结构参数光滑管束换热单元的44%,且试验结构换热单元阻力系数高于光滑管束单元,在进行翅片管束换热器设计时应综合考虑翅片对流动换热性能的影响。试验获取的翅片管式换热单元管外努塞尔数经验关联式与阻力系数经验关联式拟合偏差均不超过5%,较为准确地反应了换热单元外侧的流动换热特性。
Abstract:In order to realize effective interaction between the internal thermal environment and heat sink of aeroengine, the flow and heat transfer characteristics of heat exchanger were studied. Taking the heat exchanger for fuel cooling as an example, the flow and heat transfer performance of small-diameter rectangular finned-tube air-fuel heat exchanger was studied. High temperature fuel and room-temperature air were used as media in the heat exchanger to explore the flow and heat transfer performance under different working conditions. And the empirical correlations for the outside of the tube were obtained. The results showed that the convective heat transfer coefficient of the rectangular finned tube bundles was about 44% of the bare tube bundle with the same structural parameters, while its flow resistance was still higher than the bare tube bundle. Therefore, the influence of fins on flow and heat transfer performance should be comprehensively considered in the design of finned tube heat exchanger. The fitting deviations of the empirical correlations of the Nusselt number and resistance coefficient outside the finned tube heat exchange unit were both lower than 5%, accurately reflecting the flow and heat transfer characteristics outside the finned tube bundles.
-
表 1 翅片管式换热器结构参数
Table 1. Structure parameters of finned-tube heat exchanger
结构变量 数值 结构变量 数值 换热管外径/mm 2.2 单管总长/m 5.63 换热管内径/mm 1.8 高度/mm 400 横向排数 10 横向宽度/mm 52 纵向排数 28 纵向长度/mm 126 纵向每排进油管数 2 弯头直径/mm 9 管子总数 20 翅片厚度/mm 0.2 S1/mm 4.8 翅片层数 176 S2/mm 4.5 翅片间距/mm 2.2 表 2 试验工况分组及参数范围
Table 2. Groups for working condition and parameter range
工况 燃油流量/(kg/s) 空气流量/(kg/s) 燃油温度/K 第1组 0.192 0.135~0.285 440 第2组 0.177 0.135~0.285 450 第3组 0.153 0.135~0.285 470 第4组 0.153 0.232 455~535 表 3 相关顺排结构Nu经验关联式
Table 3. Literature Nu correlation for related structures
公式 换热单元结构及Nu经验关联式 Schmidt公式[26] $ Nu{\text{ = 0}}{\text{.3}}R{e^{{\text{0}}{\text{.625}}}}{\left( {{{{A_{{\text{lf}}}}} \mathord{\left/ {\vphantom {{{A_{{\text{lf}}}}} {{A_{{\text{lr}}}}}}} \right. } {{A_{{\text{lr}}}}}}} \right)^{{{ - 0}}{\text{.375}}}}P{r^{{\text{1/3}}}} $
圆管高圆翅-当量尺寸为圆管外径drGroehn公式[31] $ Nu{\text{ = 0}}{{.072\;9}}R{e^{{\text{0}}{\text{.74}}}}P{r^{{\text{0}}{\text{.36}}}} $
圆管矮圆翅-当量尺寸为圆管外径drWen公式[26] $ Nu{\text{ = 0}}{\text{.161}}R{e^{{\text{0}}{\text{.579}}}}P{r^{{\text{0}}{\text{.333}}}}{\left( {{{Pr} \mathord{\left/ {\vphantom {{Pr} {P{r_{\text{w}}}}}} \right. } {P{r_{\text{w}}}}}} \right)^{{\text{0}}{\text{.25}}}} $
圆管矩形翅片-当量尺寸为圆管外径drVampola公式[27] $ Nu = 0.251{{Re} ^{0.67}}{\left( {\dfrac{{{S_1} - {d_{\text{r}}}}}{{{d_{\text{r}}}}}} \right)^{ - 0.2}}{\left( {\dfrac{{{S_1} - {d_{\text{r}}}}}{{{S_{\text{f}}}}} + 1} \right)^{ - 0.2}}{\left( {\dfrac{{{S_1} - {d_{\text{r}}}}}{{{S_2} - {d_{\text{r}}}}}} \right)^{0.4}} $
圆管矩形翅片-当量尺寸为换算尺寸deLyu公式[18] $ Nu{\text{ = 0}}{{.157\;75}}R{e^{{\text{0}}{{.612\;47}}}}{\left( {{{{S_{\text{f}}}} /{{d_{\text{r}}}}}} \right)^{0.062}} $
圆管矩形翅片-当量尺寸为换算尺寸deGnielinski公式[28] $ N{u_{\text{i}}} = \left\{ \begin{gathered} \frac{{{{{f_{\text{h}}}} /8} \cdot \left( {R{e_{\text{i}}} - 1\;000} \right)P{r_{\text{i}}}}}{{1 + 12.7{{\left( {{{{f_{\text{h}}}} / 8}} \right)}^{0.5}}\left( {Pr_{\text{i}}^{{2/ 3}} - 1} \right)}}\quad\quad\quad\quad\quad R{e_{\text{i}}} < {10^4} \\ \frac{{{{{f_{\text{h}}}} / 8} \cdot R{e_{\text{i}}}P{r_{\text{i}}}}}{{1 + {{900} /{R{e_{\text{i}}}}} + 12.7{{\left( {{{{f_{\text{h}}}} /8}} \right)}^{0.5}}\left( {Pr_{\text{i}}^{{2/3}} - 1} \right)}}\quad R{e_{\text{i}}} > {10^4} \\ \end{gathered} \right. $
$ f = { (1.82{\rm{lg}}R{e_{\rm{i}}} - 1.64) ^{ - 2}} $矩形通道-当量尺寸为水力直径Zhukauskas公式[28] $ Nu{\text{ = 0}}{\text{.27}}R{e^{{\text{0}}{\text{.63}}}}P{r^{{\text{0}}{\text{.36}}}} $
顺排管束-当量尺寸为圆管外径dr表 4 相关顺排结构f经验关联式
Table 4. Literature f correlation for related structures
公式 换热单元结构及f经验关联式 Vampola公式[27] $f = 1.463{ {Re} ^{ - 0.245} }{\left( {\dfrac{ { {S_1} - {d_{\text{r} } } }}{ { {d_{\text{r} } } } } } \right)^{ - 0.9} }{\left( {\dfrac{ { {S_1} - {d_{\text{r} } } }}{ { {S_{\text{f} } } }} + 1} \right)^{0.7} }{\left( {\dfrac{ { {d_{\text{e} } } }}{ { {d_{\text{r} } } } } } \right)^{0.9} }$
圆管矩形翅片-当量尺寸为换算尺寸deWen公式[26] $ f{\text{ = 0}}{\text{.44}} \cdot {f_{{\text{Vampola}}}} $
圆管矩形翅片-当量尺寸为换算尺寸deLyu公式[18] $Nu{\text{ = 0} }{ {.157\;75} }R{e^{ {\text{0} }{{.612\;47} } } }{\left( { { { {S_{\text{f} } } } / { {d_{\text{r} } } } } } \right)^{0.062} }$
圆管矩形翅片-当量尺寸为换算尺寸de锅炉手册公式[32] $ \psi = {{\left( {{S_1} - {d_{\rm{o}}}} \right)} / {\left( {{S_2} - {d_{\rm{o}}}} \right)}} $
$\begin{gathered} f = 0.38{N_L}{\left( { { { {S_1} } / { {d_{\rm{o} } } } } - 1} \right)^{ - 0.5} }{\left( {\psi - 0.94} \right)^{ - 0.59} }R{e_{\rm{o} } }^{ { { - 0.2} /{ {\psi ^2} } } } \\ (1 < \psi \leqslant 8) \end{gathered}$
光滑圆形管束-当量尺寸为圆管外径drFilonenko公式[28] $f = { (1.82{\rm{l} }{ {\rm{g} } }R{e_{\rm{i} } } - 1.64) ^{ - 2} }$
矩形通道-当量尺寸为水力直径 -
[1] 庄来鹤,徐国强,闻洁,等. 基于典型飞行任务的CCA技术优势分析[J]. 航空动力学报,2022,37(7): 1363-1378. doi: 10.13224/j.cnki.jasp.20210265ZHUANG Laihe,XU Guoqiang,WEN Jie,et al. Superiority analysis of CCA technology under typical flight mission[J]. Journal of Aerospace Power,2022,37(7): 1363-1378. (in Chinese) doi: 10.13224/j.cnki.jasp.20210265 [2] SUHLER P A, ALLEN N. From Rainbow to Gusto: stealth and the design of the Lockheed Blackbird[M]. Reston, VA: American Institute of Aeronautics and Astronautics, 2009. [3] 周建兴,张浩成,高启滨,等. 基于SABRE技术的高超声速预冷飞行器应用分析[J]. 推进技术,2018,39(10): 2196-2206. doi: 10.13675/j.cnki.tjjs.2018.10.005ZHOU Jianxing,ZHANG Haocheng,GAO Qibin,et al. Analysis of vehicle applications propelled by SABRE-based precooling hypersonic engine[J]. Journal of Propulsion Technology,2018,39(10): 2196-2206. (in Chinese) doi: 10.13675/j.cnki.tjjs.2018.10.005 [4] VARVILL R. Heat exchanger development at Reaction Engines Ltd[J]. Acta Astronautica,2010,66(9/10): 1468-1474. [5] VARVILL R. Sabre technology development status and update[R]. European Conference for Aeronautics and Space Sciences (EUCASS), EUCASS2019-307, 2019. [6] BRUENING G B, CHANG W S. Cooled cooling air systems for turbine thermal management[R]. ASME Paper 99-GT-014, 1999. [7] KIM N H,CHO J R,RA Y J. Structural integrity analysis and evaluation of cooled cooling air heat exchanger for aero engine[J]. International Journal of Precision Engineering and Manufacturing,2018,19(4): 529-535. doi: 10.1007/s12541-018-0064-5 [8] JAFARI S,NIKOLAIDIS T. Thermal management systems for civil aircraft engines: review, challenges and exploring the future[J]. Applied Sciences,2018,8(11): 2044.1-2044.16. [9] 刘荫泽,张声宝,董威,等. 航空发动机1次表面换热器流动换热性能分析[J]. 航空发动机,2017,43(4): 61-68. doi: 10.13477/j.cnki.aeroengine.2017.04.011LIU Yinze,ZHANG Shengbao,DONG Wei,et al. Analysis of flow and heat transfer performance of primary surface heat exchanger for aeroengine[J]. Aeroengine,2017,43(4): 61-68. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2017.04.011 [10] 吕亚国,刘振侠. 航空发动机管壳式燃-滑油散热器换热特性计算[J]. 航空动力学报,2014,29(12): 2830-2835. doi: 10.13224/j.cnki.jasp.2014.12.007LÜ Yaguo,LIU Zhenxia. Heat transfer characteristics calculation for aero-engine shell-tube fuel-oil heat exchanger[J]. Journal of Aerospace Power,2014,29(12): 2830-2835. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.12.007 [11] LIU Qihang,XU Guoqiang,WEN Jie,et al. Multivariate design and analysis of aircraft heat exchanger under multiple working conditions within flight envelope[J]. Journal of Thermal Science and Engineering Applications,2022,14(6): 061003.1-061003.14. [12] 陈一鸣,李泽鹏,张俊强,等. 紧凑式强预冷换热器叉排管束的大涡模拟[J]. 航空动力学报,2021,36(4): 701-712. doi: 10.13224/j.cnki.jasp.2021.04.003CHEN Yiming,LI Zepeng,ZHANG Junqiang,et al. Large eddy simulation on the staggered tube bundle of the compact precooler[J]. Journal of Aerospace Power,2021,36(4): 701-712. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.04.003 [13] 龚昊,王占学,康涌,等. 间冷回热航空发动机性能计算与分析[J]. 航空动力学报,2014,29(6): 1453-1461. doi: 10.13224/j.cnki.jasp.2014.06.027GONG Hao,WANG Zhanxue,KANG Yong,et al. Performance calculation and analysis of intercooled recuperated aero-engine[J]. Journal of Aerospace Power,2014,29(6): 1453-1461. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.06.027 [14] QASEM N A A,ZUBAIR S M. Compact and microchannel heat exchangers: a comprehensive review of air-side friction factor and heat transfer correlations[J]. Energy Conversion and Management,2018,173: 555-601. doi: 10.1016/j.enconman.2018.06.104 [15] TAHSEEN T A,ISHAK M,RAHMAN M M. An overview on thermal and fluid flow characteristics in a plain plate finned and un-finned tube banks heat exchanger[J]. Renewable and Sustainable Energy Reviews,2015,43: 363-380. doi: 10.1016/j.rser.2014.10.070 [16] FU Yanchen,WEN Jie,TAO Zhi,et al. Experimental research on convective heat transfer of supercritical hydrocarbon fuel flowing through U-turn tubes[J]. Applied Thermal Engineering,2017,116: 43-55. doi: 10.1016/j.applthermaleng.2017.01.058 [17] WANG Yingshuang,LIU Zhichun,HUANG Suyi,et al. Experimental investigation of shell-and-tube heat exchanger with a new type of baffles[J]. Heat and Mass Transfer,2011,47(7): 833-839. doi: 10.1007/s00231-010-0590-x [18] 吕璐璐. 小管径翅片管束流动换热研究[D]. 北京: 北京航空航天大学, 2019.LÜ Lulu. Investigation on flow and convective heat transfer characteristic of fin-and-tube bundles with small diameter[D]. Beijing: Beihang University, 2019. (in Chinese) [19] 魏双. 翅片管换热器强化传热与流阻性能分析及结构优化[D]. 杭州: 浙江大学, 2016.WEI Shuang. Analysis and optimal design of the enhanced heat transfer and flow resistance within finned tube heat exchangers[D]. Hangzhou: Zhejiang University, 2016. (in Chinese) [20] 张凡,李兆辉,李晓宇,等. 不同材料翅片管换热器特性的试验研究[J]. 西安交通大学学报,2015,49(5): 62-67. doi: 10.7652/xjtuxb201505010ZHANG Fan,LI Zhaohui,LI Xiaoyu,et al. Experimental study on the performance of plane fin-tube heat exchanger made of different materials[J]. Journal of Xi’an Jiaotong University,2015,49(5): 62-67. (in Chinese) doi: 10.7652/xjtuxb201505010 [21] WONGWISES S,CHOKEMAN Y. Effect of fin pitch and number of tube rows on the air side performance of herringbone wavy fin and tube heat exchangers[J]. Energy Conversion and Management,2005,46(13/14): 2216-2231. [22] 蔡伟华,徐国强,陶智,等. 单程叉流翅片管束式换热器的传热分析[J]. 航空动力学报,2002,17(4): 464-468. doi: 10.3969/j.issn.1000-8055.2002.04.016CAI Weihua,XU Guoqiang,TAO Zhi,et al. An analysis of the effectiveness of one pass cross-flow finned tube bundle heat exchangers[J]. Journal of Aerospace Power,2002,17(4): 464-468. (in Chinese) doi: 10.3969/j.issn.1000-8055.2002.04.016 [23] WANG Chichuan,CHI Kuanyu. Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part I: new experimental data[J]. International Journal of Heat and Mass Transfer,2000,43(15): 2681-2691. doi: 10.1016/S0017-9310(99)00332-4 [24] KIM Y H, KIM Y C, KIM J, et al. Effects of fin and tube alignment on the heat transfer performance of finned-tube heat exchangers with large fin pitch[R]. West Lafayette, US: International Refrigeration and Air Conditioning Conference, 2004. [25] OKBAZ A,PINARBAŞI A,OLCAY A B,et al. An experimental, computational and flow visualization study on the air-side thermal and hydraulic performance of louvered fin and round tube heat exchangers[J]. International Journal of Heat and Mass Transfer,2018,121: 153-169. doi: 10.1016/j.ijheatmasstransfer.2017.12.127 [26] WEN Jie,HUANG Haoran,LI Haiwang,et al. Thermal and hydraulic performance of a compact plate finned tube air-fuel heat exchanger for aero-engine[J]. Applied Thermal Engineering,2017,126: 920-928. doi: 10.1016/j.applthermaleng.2017.07.103 [27] 钱颂文. 换热器设计手册[M]. 北京: 化学工业出版社, 2002. [28] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006. [29] 余建祖. 换热器原理与设计[M]. 北京: 北京航空航天大学出版社, 2006. [30] SCHMIDT T E. Heat transfer calculations for extended surfaces[J]. Refrigerating Engineering,1949,57(4): 351-357. [31] SCHLUNDER E U. Heat exchanger design handbook[M]. New York: Hemisphere Publishing, 1983. [32] 吴味隆. 锅炉及锅炉房设备[M]. 4版. 北京: 建筑工业出版社, 2006. -