留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紧凑翅片管式空气-燃油换热器试验

刘启航 闻洁 吕璐璐 刘银龙 庄来鹤 董苯思

刘启航, 闻洁, 吕璐璐, 等. 紧凑翅片管式空气-燃油换热器试验[J]. 航空动力学报, 2023, 38(12):2848-2860 doi: 10.13224/j.cnki.jasp.20220002
引用本文: 刘启航, 闻洁, 吕璐璐, 等. 紧凑翅片管式空气-燃油换热器试验[J]. 航空动力学报, 2023, 38(12):2848-2860 doi: 10.13224/j.cnki.jasp.20220002
LIU Qihang, WEN Jie, LÜ Lulu, et al. Experiment of compact finned-tube air-fuel heat exchanger[J]. Journal of Aerospace Power, 2023, 38(12):2848-2860 doi: 10.13224/j.cnki.jasp.20220002
Citation: LIU Qihang, WEN Jie, LÜ Lulu, et al. Experiment of compact finned-tube air-fuel heat exchanger[J]. Journal of Aerospace Power, 2023, 38(12):2848-2860 doi: 10.13224/j.cnki.jasp.20220002

紧凑翅片管式空气-燃油换热器试验

doi: 10.13224/j.cnki.jasp.20220002
基金项目: 国家重大科技专项(J2019-Ⅲ-0021-0065)
详细信息
    作者简介:

    刘启航(1992-),男,博士生,主要从事航空发动机热管理相关研究。 E-mail:liuqihang@buaa.edu.cn

    通讯作者:

    闻洁(1964-),女,研究员、博士生导师,博士,主要从事航空发动机气动热力及工程热物理相关研究。 E-mail:wenjie@buaa.edu.cn

  • 中图分类号: V231.2

Experiment of compact finned-tube air-fuel heat exchanger

  • 摘要:

    为实现航空发动机内部热环境与热沉的有效交互,探究换热元件的流动换热特性。以航空发动机燃油系统回油冷却换热器为例,开展了小管径矩形翅片管式空气-燃油换热器流动换热性能试验研究。试验采用高温燃油与常温空气两股工质在换热器中进行能量交换,探究换热器在不同工况下的流动与换热性能,获取矩形翅片管式换热单元管外流动换热经验关联式。结果表明:矩形翅片管式换热单元的表面传热系数约为相同结构参数光滑管束换热单元的44%,且试验结构换热单元阻力系数高于光滑管束单元,在进行翅片管束换热器设计时应综合考虑翅片对流动换热性能的影响。试验获取的翅片管式换热单元管外努塞尔数经验关联式与阻力系数经验关联式拟合偏差均不超过5%,较为准确地反应了换热单元外侧的流动换热特性。

     

  • 图 1  SABRE预冷换热器结构示意图[5]

    Figure 1.  Structure schematic diagram of SABRE pre-cooling heat exchanger[5]

    图 2  矩形翅片管式换热单元

    Figure 2.  Rectangular finned-tube heat transfer unit

    图 3  翅片管式换热单元结构图

    Figure 3.  Structure diagram of finned-tube heat transfer unit

    图 4  翅片管式换热器实物图

    Figure 4.  Picture of the finned-tube heat exchanger

    图 5  翅片管式换热器试验台结构简图

    Figure 5.  Structure diagram of experiment system for finned-tube heat exchanger

    图 6  翅片效率CFD验证

    Figure 6.  CFD verification for fin efficiency

    图 7  3种翅片效率计算方法对比

    Figure 7.  Comparison of fin efficiency by three methods

    图 8  试验工况

    Figure 8.  Working conditions of experiment

    图 9  各试验工况换热量

    Figure 9.  Heat transfer rate for each experiment working condition

    图 10  各试验工况热不平衡度

    Figure 10.  Thermal balance deviation for each experiment working condition

    图 11  空气侧努塞尔数与雷诺数关系

    Figure 11.  Correlation of air side Nu versus Reynolds number

    图 12  空气侧努塞尔数与文献经验关联式对比

    Figure 12.  Comparison of air side Nu with literature correlations

    图 13  燃油侧阻力系数对比

    Figure 13.  Comparison of the fuel side f

    图 14  空气侧阻力系数与雷诺数关系

    Figure 14.  Correlation of air side f versus Reynolds number

    图 15  空气侧阻力系数与文献经验关联式对比

    Figure 15.  Comparison of air side f with literature correlations

    表  1  翅片管式换热器结构参数

    Table  1.   Structure parameters of finned-tube heat exchanger

    结构变量数值结构变量数值
    换热管外径/mm2.2单管总长/m5.63
    换热管内径/mm1.8高度/mm400
    横向排数10横向宽度/mm52
    纵向排数28纵向长度/mm126
    纵向每排进油管数
    2弯头直径/mm9
    管子总数20翅片厚度/mm0.2
    S1/mm4.8翅片层数176
    S2/mm4.5翅片间距/mm2.2
    下载: 导出CSV

    表  2  试验工况分组及参数范围

    Table  2.   Groups for working condition and parameter range

    工况燃油流量/(kg/s)空气流量/(kg/s)燃油温度/K
    第1组0.1920.135~0.285440
    第2组0.1770.135~0.285450
    第3组0.1530.135~0.285470
    第4组0.1530.232455~535
    下载: 导出CSV

    表  3  相关顺排结构Nu经验关联式

    Table  3.   Literature Nu correlation for related structures

    公式换热单元结构及Nu经验关联式
    Schmidt公式[26]$ Nu{\text{ = 0}}{\text{.3}}R{e^{{\text{0}}{\text{.625}}}}{\left( {{{{A_{{\text{lf}}}}} \mathord{\left/ {\vphantom {{{A_{{\text{lf}}}}} {{A_{{\text{lr}}}}}}} \right. } {{A_{{\text{lr}}}}}}} \right)^{{{ - 0}}{\text{.375}}}}P{r^{{\text{1/3}}}} $
    圆管高圆翅-当量尺寸为圆管外径dr
    Groehn公式[31]$ Nu{\text{ = 0}}{{.072\;9}}R{e^{{\text{0}}{\text{.74}}}}P{r^{{\text{0}}{\text{.36}}}} $
    圆管矮圆翅-当量尺寸为圆管外径dr
    Wen公式[26]$ Nu{\text{ = 0}}{\text{.161}}R{e^{{\text{0}}{\text{.579}}}}P{r^{{\text{0}}{\text{.333}}}}{\left( {{{Pr} \mathord{\left/ {\vphantom {{Pr} {P{r_{\text{w}}}}}} \right. } {P{r_{\text{w}}}}}} \right)^{{\text{0}}{\text{.25}}}} $
    圆管矩形翅片-当量尺寸为圆管外径dr
    Vampola公式[27]$ Nu = 0.251{{Re} ^{0.67}}{\left( {\dfrac{{{S_1} - {d_{\text{r}}}}}{{{d_{\text{r}}}}}} \right)^{ - 0.2}}{\left( {\dfrac{{{S_1} - {d_{\text{r}}}}}{{{S_{\text{f}}}}} + 1} \right)^{ - 0.2}}{\left( {\dfrac{{{S_1} - {d_{\text{r}}}}}{{{S_2} - {d_{\text{r}}}}}} \right)^{0.4}} $
    圆管矩形翅片-当量尺寸为换算尺寸de
    Lyu公式[18]$ Nu{\text{ = 0}}{{.157\;75}}R{e^{{\text{0}}{{.612\;47}}}}{\left( {{{{S_{\text{f}}}} /{{d_{\text{r}}}}}} \right)^{0.062}} $
    圆管矩形翅片-当量尺寸为换算尺寸de
    Gnielinski公式[28]$ N{u_{\text{i}}} = \left\{ \begin{gathered} \frac{{{{{f_{\text{h}}}} /8} \cdot \left( {R{e_{\text{i}}} - 1\;000} \right)P{r_{\text{i}}}}}{{1 + 12.7{{\left( {{{{f_{\text{h}}}} / 8}} \right)}^{0.5}}\left( {Pr_{\text{i}}^{{2/ 3}} - 1} \right)}}\quad\quad\quad\quad\quad R{e_{\text{i}}} < {10^4} \\ \frac{{{{{f_{\text{h}}}} / 8} \cdot R{e_{\text{i}}}P{r_{\text{i}}}}}{{1 + {{900} /{R{e_{\text{i}}}}} + 12.7{{\left( {{{{f_{\text{h}}}} /8}} \right)}^{0.5}}\left( {Pr_{\text{i}}^{{2/3}} - 1} \right)}}\quad R{e_{\text{i}}} > {10^4} \\ \end{gathered} \right. $
    $ f = { (1.82{\rm{lg}}R{e_{\rm{i}}} - 1.64) ^{ - 2}} $矩形通道-当量尺寸为水力直径
    Zhukauskas公式[28]$ Nu{\text{ = 0}}{\text{.27}}R{e^{{\text{0}}{\text{.63}}}}P{r^{{\text{0}}{\text{.36}}}} $
    顺排管束-当量尺寸为圆管外径dr
    下载: 导出CSV

    表  4  相关顺排结构f经验关联式

    Table  4.   Literature f correlation for related structures

    公式换热单元结构及f经验关联式
    Vampola公式[27]$f = 1.463{ {Re} ^{ - 0.245} }{\left( {\dfrac{ { {S_1} - {d_{\text{r} } } }}{ { {d_{\text{r} } } } } } \right)^{ - 0.9} }{\left( {\dfrac{ { {S_1} - {d_{\text{r} } } }}{ { {S_{\text{f} } } }} + 1} \right)^{0.7} }{\left( {\dfrac{ { {d_{\text{e} } } }}{ { {d_{\text{r} } } } } } \right)^{0.9} }$
    圆管矩形翅片-当量尺寸为换算尺寸de
    Wen公式[26]$ f{\text{ = 0}}{\text{.44}} \cdot {f_{{\text{Vampola}}}} $
    圆管矩形翅片-当量尺寸为换算尺寸de
    Lyu公式[18]$Nu{\text{ = 0} }{ {.157\;75} }R{e^{ {\text{0} }{{.612\;47} } } }{\left( { { { {S_{\text{f} } } } / { {d_{\text{r} } } } } } \right)^{0.062} }$
    圆管矩形翅片-当量尺寸为换算尺寸de
    锅炉手册公式[32]$ \psi = {{\left( {{S_1} - {d_{\rm{o}}}} \right)} / {\left( {{S_2} - {d_{\rm{o}}}} \right)}} $
    $\begin{gathered} f = 0.38{N_L}{\left( { { { {S_1} } / { {d_{\rm{o} } } } } - 1} \right)^{ - 0.5} }{\left( {\psi - 0.94} \right)^{ - 0.59} }R{e_{\rm{o} } }^{ { { - 0.2} /{ {\psi ^2} } } } \\ (1 < \psi \leqslant 8) \end{gathered}$
    光滑圆形管束-当量尺寸为圆管外径dr
    Filonenko公式[28]$f = { (1.82{\rm{l} }{ {\rm{g} } }R{e_{\rm{i} } } - 1.64) ^{ - 2} }$
    矩形通道-当量尺寸为水力直径
    下载: 导出CSV
  • [1] 庄来鹤,徐国强,闻洁,等. 基于典型飞行任务的CCA技术优势分析[J]. 航空动力学报,2022,37(7): 1363-1378. doi: 10.13224/j.cnki.jasp.20210265

    ZHUANG Laihe,XU Guoqiang,WEN Jie,et al. Superiority analysis of CCA technology under typical flight mission[J]. Journal of Aerospace Power,2022,37(7): 1363-1378. (in Chinese) doi: 10.13224/j.cnki.jasp.20210265
    [2] SUHLER P A, ALLEN N. From Rainbow to Gusto: stealth and the design of the Lockheed Blackbird[M]. Reston, VA: American Institute of Aeronautics and Astronautics, 2009.
    [3] 周建兴,张浩成,高启滨,等. 基于SABRE技术的高超声速预冷飞行器应用分析[J]. 推进技术,2018,39(10): 2196-2206. doi: 10.13675/j.cnki.tjjs.2018.10.005

    ZHOU Jianxing,ZHANG Haocheng,GAO Qibin,et al. Analysis of vehicle applications propelled by SABRE-based precooling hypersonic engine[J]. Journal of Propulsion Technology,2018,39(10): 2196-2206. (in Chinese) doi: 10.13675/j.cnki.tjjs.2018.10.005
    [4] VARVILL R. Heat exchanger development at Reaction Engines Ltd[J]. Acta Astronautica,2010,66(9/10): 1468-1474.
    [5] VARVILL R. Sabre technology development status and update[R]. European Conference for Aeronautics and Space Sciences (EUCASS), EUCASS2019-307, 2019.
    [6] BRUENING G B, CHANG W S. Cooled cooling air systems for turbine thermal management[R]. ASME Paper 99-GT-014, 1999.
    [7] KIM N H,CHO J R,RA Y J. Structural integrity analysis and evaluation of cooled cooling air heat exchanger for aero engine[J]. International Journal of Precision Engineering and Manufacturing,2018,19(4): 529-535. doi: 10.1007/s12541-018-0064-5
    [8] JAFARI S,NIKOLAIDIS T. Thermal management systems for civil aircraft engines: review, challenges and exploring the future[J]. Applied Sciences,2018,8(11): 2044.1-2044.16.
    [9] 刘荫泽,张声宝,董威,等. 航空发动机1次表面换热器流动换热性能分析[J]. 航空发动机,2017,43(4): 61-68. doi: 10.13477/j.cnki.aeroengine.2017.04.011

    LIU Yinze,ZHANG Shengbao,DONG Wei,et al. Analysis of flow and heat transfer performance of primary surface heat exchanger for aeroengine[J]. Aeroengine,2017,43(4): 61-68. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2017.04.011
    [10] 吕亚国,刘振侠. 航空发动机管壳式燃-滑油散热器换热特性计算[J]. 航空动力学报,2014,29(12): 2830-2835. doi: 10.13224/j.cnki.jasp.2014.12.007

    LÜ Yaguo,LIU Zhenxia. Heat transfer characteristics calculation for aero-engine shell-tube fuel-oil heat exchanger[J]. Journal of Aerospace Power,2014,29(12): 2830-2835. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.12.007
    [11] LIU Qihang,XU Guoqiang,WEN Jie,et al. Multivariate design and analysis of aircraft heat exchanger under multiple working conditions within flight envelope[J]. Journal of Thermal Science and Engineering Applications,2022,14(6): 061003.1-061003.14.
    [12] 陈一鸣,李泽鹏,张俊强,等. 紧凑式强预冷换热器叉排管束的大涡模拟[J]. 航空动力学报,2021,36(4): 701-712. doi: 10.13224/j.cnki.jasp.2021.04.003

    CHEN Yiming,LI Zepeng,ZHANG Junqiang,et al. Large eddy simulation on the staggered tube bundle of the compact precooler[J]. Journal of Aerospace Power,2021,36(4): 701-712. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.04.003
    [13] 龚昊,王占学,康涌,等. 间冷回热航空发动机性能计算与分析[J]. 航空动力学报,2014,29(6): 1453-1461. doi: 10.13224/j.cnki.jasp.2014.06.027

    GONG Hao,WANG Zhanxue,KANG Yong,et al. Performance calculation and analysis of intercooled recuperated aero-engine[J]. Journal of Aerospace Power,2014,29(6): 1453-1461. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.06.027
    [14] QASEM N A A,ZUBAIR S M. Compact and microchannel heat exchangers: a comprehensive review of air-side friction factor and heat transfer correlations[J]. Energy Conversion and Management,2018,173: 555-601. doi: 10.1016/j.enconman.2018.06.104
    [15] TAHSEEN T A,ISHAK M,RAHMAN M M. An overview on thermal and fluid flow characteristics in a plain plate finned and un-finned tube banks heat exchanger[J]. Renewable and Sustainable Energy Reviews,2015,43: 363-380. doi: 10.1016/j.rser.2014.10.070
    [16] FU Yanchen,WEN Jie,TAO Zhi,et al. Experimental research on convective heat transfer of supercritical hydrocarbon fuel flowing through U-turn tubes[J]. Applied Thermal Engineering,2017,116: 43-55. doi: 10.1016/j.applthermaleng.2017.01.058
    [17] WANG Yingshuang,LIU Zhichun,HUANG Suyi,et al. Experimental investigation of shell-and-tube heat exchanger with a new type of baffles[J]. Heat and Mass Transfer,2011,47(7): 833-839. doi: 10.1007/s00231-010-0590-x
    [18] 吕璐璐. 小管径翅片管束流动换热研究[D]. 北京: 北京航空航天大学, 2019.

    LÜ Lulu. Investigation on flow and convective heat transfer characteristic of fin-and-tube bundles with small diameter[D]. Beijing: Beihang University, 2019. (in Chinese)
    [19] 魏双. 翅片管换热器强化传热与流阻性能分析及结构优化[D]. 杭州: 浙江大学, 2016.

    WEI Shuang. Analysis and optimal design of the enhanced heat transfer and flow resistance within finned tube heat exchangers[D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
    [20] 张凡,李兆辉,李晓宇,等. 不同材料翅片管换热器特性的试验研究[J]. 西安交通大学学报,2015,49(5): 62-67. doi: 10.7652/xjtuxb201505010

    ZHANG Fan,LI Zhaohui,LI Xiaoyu,et al. Experimental study on the performance of plane fin-tube heat exchanger made of different materials[J]. Journal of Xi’an Jiaotong University,2015,49(5): 62-67. (in Chinese) doi: 10.7652/xjtuxb201505010
    [21] WONGWISES S,CHOKEMAN Y. Effect of fin pitch and number of tube rows on the air side performance of herringbone wavy fin and tube heat exchangers[J]. Energy Conversion and Management,2005,46(13/14): 2216-2231.
    [22] 蔡伟华,徐国强,陶智,等. 单程叉流翅片管束式换热器的传热分析[J]. 航空动力学报,2002,17(4): 464-468. doi: 10.3969/j.issn.1000-8055.2002.04.016

    CAI Weihua,XU Guoqiang,TAO Zhi,et al. An analysis of the effectiveness of one pass cross-flow finned tube bundle heat exchangers[J]. Journal of Aerospace Power,2002,17(4): 464-468. (in Chinese) doi: 10.3969/j.issn.1000-8055.2002.04.016
    [23] WANG Chichuan,CHI Kuanyu. Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part I: new experimental data[J]. International Journal of Heat and Mass Transfer,2000,43(15): 2681-2691. doi: 10.1016/S0017-9310(99)00332-4
    [24] KIM Y H, KIM Y C, KIM J, et al. Effects of fin and tube alignment on the heat transfer performance of finned-tube heat exchangers with large fin pitch[R]. West Lafayette, US: International Refrigeration and Air Conditioning Conference, 2004.
    [25] OKBAZ A,PINARBAŞI A,OLCAY A B,et al. An experimental, computational and flow visualization study on the air-side thermal and hydraulic performance of louvered fin and round tube heat exchangers[J]. International Journal of Heat and Mass Transfer,2018,121: 153-169. doi: 10.1016/j.ijheatmasstransfer.2017.12.127
    [26] WEN Jie,HUANG Haoran,LI Haiwang,et al. Thermal and hydraulic performance of a compact plate finned tube air-fuel heat exchanger for aero-engine[J]. Applied Thermal Engineering,2017,126: 920-928. doi: 10.1016/j.applthermaleng.2017.07.103
    [27] 钱颂文. 换热器设计手册[M]. 北京: 化学工业出版社, 2002.
    [28] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006.
    [29] 余建祖. 换热器原理与设计[M]. 北京: 北京航空航天大学出版社, 2006.
    [30] SCHMIDT T E. Heat transfer calculations for extended surfaces[J]. Refrigerating Engineering,1949,57(4): 351-357.
    [31] SCHLUNDER E U. Heat exchanger design handbook[M]. New York: Hemisphere Publishing, 1983.
    [32] 吴味隆. 锅炉及锅炉房设备[M]. 4版. 北京: 建筑工业出版社, 2006.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  70
  • HTML浏览量:  15
  • PDF量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-04
  • 网络出版日期:  2023-09-12

目录

    /

    返回文章
    返回