留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液体火箭发动机系统振荡及稳定性研究进展

董蒙 谭永华 邢理想 徐浩海

董蒙, 谭永华, 邢理想, 等. 液体火箭发动机系统振荡及稳定性研究进展[J]. 航空动力学报, 2023, 38(12):2919-2936 doi: 10.13224/j.cnki.jasp.20220036
引用本文: 董蒙, 谭永华, 邢理想, 等. 液体火箭发动机系统振荡及稳定性研究进展[J]. 航空动力学报, 2023, 38(12):2919-2936 doi: 10.13224/j.cnki.jasp.20220036
DONG Meng, TAN Yonghua, XING Lixiang, et al. Research progress on system oscillation and stability of liquid rocket engine[J]. Journal of Aerospace Power, 2023, 38(12):2919-2936 doi: 10.13224/j.cnki.jasp.20220036
Citation: DONG Meng, TAN Yonghua, XING Lixiang, et al. Research progress on system oscillation and stability of liquid rocket engine[J]. Journal of Aerospace Power, 2023, 38(12):2919-2936 doi: 10.13224/j.cnki.jasp.20220036

液体火箭发动机系统振荡及稳定性研究进展

doi: 10.13224/j.cnki.jasp.20220036
详细信息
    作者简介:

    董蒙(1993-),女,博士生,主要从事液体火箭发动机系统设计方面的研究

  • 中图分类号: V434

Research progress on system oscillation and stability of liquid rocket engine

  • 摘要:

    针对液体火箭发动机中与阀门相关和与燃烧组件相关的两类重要振荡,阐述了发动机系统振荡现象、振荡模式以及稳定性的研究进展。结果表明,与阀门相关的振荡主要表现为阀门自身和与管路系统耦合的两种不稳定振荡模式;重点是振荡敏感参数分析,难点在于自激振荡临界稳定参数的获取和振荡频率的辨识。与燃烧组件相关的振荡表现为与供应系统耦合的燃烧不稳定、与喷注过程耦合的燃烧不稳定以及燃烧过程自身不稳定三种模式;流量型稳定性机理研究较成熟,内在稳定性机理准确建模相对匮乏;对时滞模型的进一步探究和对燃烧过程数学模型的深入完善是今后系统级燃烧不稳定振荡研究的重难点。

     

  • 图 1  受迫振荡与自激振荡[1]

    Figure 1.  Forced oscillation and self-excited oscillation[1]

    图 2  软硬自激振荡示意图

    Figure 2.  Schematic diagram of soft and hard self-excited oscillation

    图 3  阀门自身振荡结构框图

    Figure 3.  Block diagram of valve self-oscillation

    图 4  管路系统耦合振荡结构框图

    Figure 4.  Block diagram of pipeline system coupled oscillation

    图 5  供应系统耦合燃烧振荡结构框图

    Figure 5.  Block diagram of feed system coupled combustion oscillation

    图 6  喷注耦合燃烧振荡结构框图

    Figure 6.  Block diagram of injection system coupled combustion oscillation

    图 7  文献[42]中喷注耦合燃烧振荡结构框图

    Figure 7.  Block diagram of injection system coupled combustion oscillation in the literature [42]

    图 8  内在燃烧振荡结构框图

    Figure 8.  Block diagram of internal combustion oscillation

    图 9  真实阀门-发动机系统耦合振荡结构框图

    Figure 9.  Block diagram of real valve-engine system coupled oscillation

    图 10  真实燃烧组件-发动机系统耦合振荡结构框图

    Figure 10.  Block diagram of real combustion component-engine system coupled oscillation

    图 11  时滞描述[10]

    Figure 11.  Description of time delay[10]

    图 12  相互作用指数描述[10]

    Figure 12.  Description of interaction index[10]

    图 13  各过程时间滞后引起系统不稳定示意图[1]

    Figure 13.  Schematic diagram of system instability caused by time lag of each process[1]

    图 14  液体火箭发动机燃烧室中重要过程[1]

    Figure 14.  Important processes in the combustion chamber of a liquid rocket engine[1]

    图 15  某发动机仿真过程燃料喷射速率、蒸发速率以及室压随时间的变化[85]

    Figure 15.  Variations of fuel injection rate, evaporation rate and chamber pressure with time during an engine simulation[85]

    图 16  文献[58]中发动机系统耦合振荡结构图

    Figure 16.  Block diagram of engine system coupling oscillation in the literature [58]

    图 17  燃烧区求解算法框图[58]

    Figure 17.  Block diagram of combustion zone solution algorithm[58]

  • [1] CULICK F E C. Unsteady motions in combustion chambers for propulsion systems[R]. RTO-AG-AVT-039, 2006.
    [2] SEKITA R, MATSUDA M, NAKAMURA R. Pressure oscillation analyses of the pressure regulator for the H-IIA propulsion system[R]. AIAA-2003-4600, 2003.
    [3] HURLBERT E, ABE J. Methods used to investigate and resolve the Space Shuttle helium pressure regulator instability[R]. AIAA-1990-2749, 1990.
    [4] 陈二锋,丁建春,武园浩,等. 气动阀门颤振的局部稳定与全局稳定特性[J]. 航空动力学报,2018,33(3): 663-670.

    CHEN Erfeng,DING Jianchun,WU Yuanhao,et al. Local and global stability of pneumatic valves’ chatter[J]. Journal of Aerospace Power,2018,33(3): 663-670. (in Chinese)
    [5] 刘上,刘红军,徐浩海,等. 单向阀流路系统自激振荡特性研究[J]. 火箭推进,2011,37(3): 1-5, 17. doi: 10.3969/j.issn.1672-9374.2011.03.001

    LIU Shang,LIU Hongjun,XU Haohai,et al. Research of self-oscillation characteristics of check valve flow-path system[J]. Journal of Rocket Propulsion,2011,37(3): 1-5, 17. (in Chinese) doi: 10.3969/j.issn.1672-9374.2011.03.001
    [6] JUNG T. Static characteristics of a flow regulator for a liquid rocket engine[J]. Journal of Spacecraft and Rockets,2011,48(3): 541-544. doi: 10.2514/1.52130
    [7] 张贵田. 高压补燃液氧煤油发动机[M]. 北京: 国防工业出版社, 2005.
    [8] 张淼,徐浩海,李斌,等. 流量调节器管路系统自激振荡特性研究[J]. 推进技术,2021,42(7): 1493-1500.

    ZHANG Miao,XU Haohai,LI Bin,et al. Auto oscillation of flow regulator pipe system[J]. Journal of Propulsion Technology,2021,42(7): 1493-1500. (in Chinese)
    [9] YANG V, ANDERSON W E. Liquid rocket engine combustion instability[M]. Washington, DC, US: American Institute of Aeronautics and Astronautics, 1995.
    [10] CASIANO M J. Extensions to the time lag models for practical application to rocket engine stability design[D]. Philadelphia, US: The Pennsylvania State University, 2010.
    [11] GIULIANO V, LEONARD T, ADAMSKI W, et al. CECE: a deep throttling demonstrator cryogenic engine for NASA’s lunar lander[R]. AIAA-2007-5480, 2007.
    [12] 薛帅杰,刘红军,陈鹏飞,等. 注气离心喷嘴喷注过程稳定性试验[J]. 航空学报,2019,40(7): 122697.

    XUE Shuaijie,LIU Hongjun,CHEN Pengfei,et al. Test on spray stability of swirl injector with gas injection[J]. Acta Aeronautica et Astronautica Sinica,2019,40(7): 122697. (in Chinese)
    [13] BAZAROV V. Throttleable liquid propellant engines swirl injectors for deep smooth thrust variations[R]. AIAA-1994-2978, 1994.
    [14] HAMMOCK W R, CURRIE E, FISHER A. Apollo experience report: descent propulsion system[R]. NASA-TN-D-7143, 1973.
    [15] DRESSLER G. Summary of deep throttling rocket engines with emphasis on Apollo LMDE[R]. AIAA-2006-5220, 2006.
    [16] SUTTON G P. History of liquid propellant rocket engines[M]. Reston, US: American Institute of Aeronautics and Astronautics, 2006
    [17] GEORGE P. An investigation of space shuttle main engine shutdown chugging instability[R]. NASA-CR-171317, 1984.
    [18] LIM K. Evaluation and improvement of liquid propellant rocket chugging analysis techniques: Part 1 a one-dimensional analysis of low frequency combustion instability in the fuel preburner of the space shuttle main engine[R]. NASA-CR-183106, 1986.
    [19] BARTRAND T. Evaluation and improvement of liquid propellant rocket chugging analysis techniques: Part 2 a study of low frequency combustion instability in rocket engine preburners using a heterogeneous stirred tank reactor model[R]. NASA-CR-182724, 1987
    [20] ORDONNEAU G, LEVY F, GIRARD N. Low frequency oscillation phenomena during Vulcain shutdown transient[R]. AIAA-2001-3543, 2001.
    [21] 刘上,刘红军,孙宏明,等. 液体火箭发动机中频耦合振荡初步研究[J]. 推进技术,2013,34(1): 101-108. doi: 10.13675/j.cnki.tjjs.2013.01.020

    LIU Shang,LIU Hongjun,SUN Hongming,et al. Preliminary study of medium frequency coupled oscillation in liquid rocket engine[J]. Journal of Propulsion Technology,2013,34(1): 101-108. (in Chinese) doi: 10.13675/j.cnki.tjjs.2013.01.020
    [22] 刘上,刘红军,陈建华,等. 富氧燃气发生器-供应系统耦合稳定性研究[J]. 推进技术,2013,34(11): 1448-1458.

    LIU Shang,LIU Hongjun,CHEN Jianhua,et al. Investigation on oxidizer-rich preburner feed system coupled stability[J]. Journal of Propulsion Technology,2013,34(11): 1448-1458. (in Chinese)
    [23] DONG M, XING L X, TAN Y H, et al. System analysis of feed system coupled combustion stability in liquid rocket engines[R]. Dubai, United Arab Emirates: 72nd International Astronautical Congress, 2021.
    [24] 陈文,邢理想,徐浩海,等. 深度节流补燃循环发动机系统稳定性研究[J]. 火箭推进,2020,46(3): 41-48.

    CHEN Wen,XING Lixiang,XU Haohai,et al. Study on system stability of deep-throttling staged combustion cycled engine[J]. Journal of Rocket Propulsion,2020,46(3): 41-48. (in Chinese)
    [25] 舍维科夫. 液体火箭发动机自动控制理论[R]. 西安: 中国航天科技集团公司第六研究院第十一研究所, 2002.
    [26] AMIRANTE R,ANDREA CATALANO L,TAMBURRANO P. The importance of a full 3D fluid dynamic analysis to evaluate the flow forces in a hydraulic directional proportional valve[J]. Engineering Computations,2014,31(5): 898-922. doi: 10.1108/EC-09-2012-0221
    [27] 张海平. 纠正一些关于稳态液动力的错误认识[J]. 液压气动与密封,2010,30(9): 10-15.

    ZHANG Haiping. Correction for some wrong opinions about flow forces[J]. Hydraulics Pneumatics & Seals,2010,30(9): 10-15. (in Chinese)
    [28] MISRA A S. Acoustic, fluid-structure and decoupled seismic analysis of piping systems[D]. Toronto, Canada: University of Toronto, 2003.
    [29] KELLY R. Comparison of surge pressure mitigation devices for use in propellant feedlines during a priming event[R]. AIAA-2019-4120, 2019.
    [30] FUNK J E. Poppet valve stability[J]. Journal of Basic Engineering,1964,86(2): 207-212. doi: 10.1115/1.3653036
    [31] HAYASHI S,HAYASE T,KURAHASHI T. Chaos in a hydraulic control valve[J]. Journal of Fluids and Structures,1997,11(6): 693-716. doi: 10.1006/jfls.1997.0096
    [32] HAYASHI S. Instability of poppet valve circuit[J]. JSME International Journal Ser C, Dynamics, Control, Robotics, Design and Manufacturing,1995,38(3): 357-366. doi: 10.1299/jsmec1993.38.357
    [33] 刘上,刘红军,陈建华,等. 流量调节器在泵压式供应系统中的动力学特性[J]. 火箭推进,2014,40(2): 28-35. doi: 10.3969/j.issn.1672-9374.2014.02.005

    LIU Shang,LIU Hongjun,CHEN Jianhua,et al. Dynamical characteristics of flow regulator in pump feed system[J]. Journal of Rocket Propulsion,2014,40(2): 28-35. (in Chinese) doi: 10.3969/j.issn.1672-9374.2014.02.005
    [34] 刘上,刘红军,徐浩海,等. 流量调节器-管路系统频率特性及稳定性[J]. 推进技术,2012,33(4): 631-638.

    LIU Shang,LIU Hongjun,XU Haohai,et al. Frequency characteristics and stability of the flow regulator-pipe system[J]. Journal of Propulsion Technology,2012,33(4): 631-638. (in Chinese)
    [35] 格列克曼. 顾明初, 译. 液体火箭发动机自动调节[M]. 北京: 宇航出版社, 1995.
    [36] WOOD D, DORSCH R. Effect of propellant feed system coupling and hydraulic parameters on analysis of chugging[R]. NASA-TN-D-3896, 1967.
    [37] LEONARDI M, DI MATTEO F, STEELANT J, et al. System analysis of low frequency combustion instabilities in liquid rocket engine[R]. AIAA-2015-4208, 2015.
    [38] SUMMERFIELD M. A theory of unstable combustion in liquid propellant rocket systems[J]. Journal of the American Rocket Society,1951,21(5): 108-114. doi: 10.2514/8.4374
    [39] GUNDER D F,FRIANT D R. Stability of flow in a rocket motor[J]. Journal of Applied Mechanics,1950,17(3): 327-333. doi: 10.1115/1.4010135
    [40] SZUCH J R, WENZEL L. Analysis of chugging in liquid-bipropellant rocket engines using propellants with different vaporization rates[R]. NASA-TN-D-3080, 1965.
    [41] KIM D,JOO S,YOON Y. Effects of fuel line acoustics on the self-excited combustion instability mode transition with hydrogen-enriched laboratory-scale partially premixed combustor[J]. International Journal of Hydrogen Energy,2020,45(38): 19956-19964. doi: 10.1016/j.ijhydene.2020.05.074
    [42] KOBAYASHI K, SHIMIZU T, DAIMON Y, et al. Studies on injection-coupled instability for liquid propellant rocket engines[R]. AIAA-2015-3843, 2015.
    [43] DE BENEDICTIS M, ORDONNEAU G. High frequency injection coupled combustion instabilities-study of combustion chamber/feed system coupling[R]. AIAA-2006-4721, 2006.
    [44] BAZAROV V G. Liquid injector dynamics[M]. Moscow, Russia: Mashinostroenie, 1979.
    [45] FU Qingfei,YANG Lijun,WANG Xiangdong. Theoretical and experimental study of the dynamics of a liquid swirl injector[J]. Journal of Propulsion and Power,2010,26(1): 94-101. doi: 10.2514/1.44271
    [46] 富庆飞,贾伯琦,杨立军,等. 燃烧室压力振荡对液-液同轴离心喷嘴混合比的影响[J]. 航空动力学报,2020,35(2): 294-297. doi: 10.13224/j.cnki.jasp.2020.02.008

    FU Qingfei,JIA Boqi,YANG Lijun,et al. Effect of combustion chamber pressure pulsation on mixing ratio of liquid-liquid coaxial swirl injector[J]. Journal of Aerospace Power,2020,35(2): 294-297. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.02.008
    [47] 刘曌俞. 液体火箭发动机喷注系统动力学特性研究[D]. 北京: 中国航天科技集团公司第一研究院, 2018.

    LIU Zhaoyu. Research on the dynamic characteristic of injecting system in liquid rocket engine[D]. Beijing: The First Academy of China Aerospace Science and Technology Corporation, 2018. (in Chinese)
    [48] AITHAL S, LIU Zhining, JENSEN R, et al. Nonlinear injection transfer function simulations for liquid propellants[R]. AIAA-2008-4742, 2008.
    [49] CROCCO L, CHENG S. Theory of combustion instability in liquid propellant rocket motors[M]. London, UK: Butterworths Publication Ltd. , 1956.
    [50] LIOI C,KU D,YANG V. Linear acoustic analysis of main combustion chamber of an oxidizer-rich staged combustion engine[J]. Journal of Propulsion and Power,2018,34(6): 1505-1518. doi: 10.2514/1.B36878
    [51] SCHULZE M,SATTELMAYER T. Linear stability assessment of a cryogenic rocket engine[J]. International Journal of Spray and Combustion Dynamics,2017,9(4): 277-298. doi: 10.1177/1756827717695281
    [52] LIEUWEN T. Online combustor stability margin assessment using dynamic pressure data[J]. Journal of Engineering for Gas Turbines and Power,2005,127(3): 478-482. doi: 10.1115/1.1850493
    [53] YI Tongxun, FUGGER C A, ROY S, et al. Characterization of pressure oscillations at the approach of combustion instabilities[R]. AIAA-2020-0173, 2020.
    [54] CASIANO M. Extracting damping ratio from dynamic data and numerical solutions[R]. NASA-TM-218227, 2016.
    [55] 汪广旭,郭灿琳,石晓波,等. 基于时滞模型的纵向燃烧不稳定性分析[J]. 推进技术,2016,37(6): 1129-1135. doi: 10.13675/j.cnki.tjjs.2016.06.017

    WANG Guangxu,GUO Canlin,SHI Xiaobo,et al. Analysis of longitudinal combustion instability based on time lag model[J]. Journal of Propulsion Technology,2016,37(6): 1129-1135. (in Chinese) doi: 10.13675/j.cnki.tjjs.2016.06.017
    [56] HEIDMANN M, WIEBER P R. Analysis of frequency response characteristics of propellant vaporization[R]. NASA-TN-D-3749, 1966.
    [57] HEIDMANN M, WIEBER P R. Analysis of n-heptane vaporization in unstable combustor with traveling transverse oscillations[R]. NASA-TN-D-3424, 1966.
    [58] NATANZON M S, CULICK F. Combustion instability[M]. Reston, US: American Institute of Aeronautics and Astronautics, 1999
    [59] 刘畅,郑孟伟,郭文君. 某型发动机自反馈调节阀动态仿真分析[J]. 导弹与航天运载技术,2020(1): 54-59.

    LIU Chang,ZHENG Mengwei,GUO Wenjun. Transient simulation and analysis of feedback regulating valve in rocket engine[J]. Missiles and Space Vehicles,2020(1): 54-59. (in Chinese)
    [60] 冯岳鹏. 氢氧补燃发动机变推力调节方案与调节过程研究[D]. 北京: 中国运载火箭技术研究院, 2021.

    FENG Yuepeng. Research on variable thrust regulating scheme and process of staged combustion cycle LOX/LH2 engine[D]. Beijing: China Academy of Launch Vehicle Technology, 2021. (in Chinese)
    [61] 刘上,刘红军,孙宏明,等. 基于增量谐波平衡法的流量调节器非线性频率特性[J]. 推进技术,2012,33(5): 814-819. doi: 10.13675/j.cnki.tjjs.2012.05.023

    LIU Shang,LIU Hongjun,SUN Hongming,et al. Research of the flow regulator nonlinear frequency characteristics by incremental harmonic balance method[J]. Journal of Propulsion Technology,2012,33(5): 814-819. (in Chinese) doi: 10.13675/j.cnki.tjjs.2012.05.023
    [62] SCHRODERS S,FIDLIN A. Asymptotic analysis of self-excited and forced vibrations of a self-regulating pressure control valve[J]. Nonlinear Dynamics,2021,103(3): 2315-2327. doi: 10.1007/s11071-021-06241-5
    [63] CROCCO L,GREY J,MATTHEWS G B. Measurements of the combustion time lag in a liquid bipropellant rocket motor[J]. Journal of Jet Propulsion,1956,26(1): 20-25. doi: 10.2514/8.6907
    [64] HARRJE D T, REARDON F H. Liquid propellant rocket combustion instability[R]. NASA-SP-194, 1972.
    [65] CROCCO L. Aspects of combustion stability in liquid propellant rocket motors: Part Ⅰ fundamentals. low frequency instability with monopropellants[J]. Journal of the American Rocket Society,1951,21(6): 163-178. doi: 10.2514/8.4393
    [66] CROCCO L. Aspects of combustion stability in liquid propellant rocket motors: Part Ⅱ low frequency instability with bipropellants. high frequency instability[J]. Journal of the American Rocket Society,1952,22(1): 7-16. doi: 10.2514/8.4410
    [67] CHENG Sin'i. High-frequency combustion instability in liquid propellant rocket with concentrated combustion and distributed time lag[J]. Journal of Jet Propulsion,1956,26(2): 87-92. doi: 10.2514/8.6930
    [68] MATTHEWS G B. Combustion instability in liquid propellant rocket motors: determination of combustion time lag parameters in a liquid bipropellant rocket motor[R]. Aeronautical Engineering Report No. 372, 1957.
    [69] SZUCH J R, WENZEL L. Experimental verification of a double dead-time model describing chugging in liquid bipropellant rocket engines[R]. NASA-TM-X-52362, 1967.
    [70] SZUCH J R. Application of a double-dead-time model describing chugging to liquid propellant rocket engines having multielement injectors[R]. NASA-TN-D-5303, 1969.
    [71] SZUCH J R. Digital computer program for analysis of chugging instabilities[R]. NASA-TN-D-7026, 1970.
    [72] LIU C K. Double time lag combustion instability model for bipropellant rocket engines[R]. NASA-CR-120137, 1973.
    [73] POLIFKE W. Modeling and analysis of premixed flame dynamics by means of distributed time delays[J]. Progress in Energy and Combustion Science,2020,79: 100845. doi: 10.1016/j.pecs.2020.100845
    [74] LEONARDI M, DI MATTEO F, STEELANT J, et al. Nonlinear analysis of low-frequency combustion instabilities in liquid rocket engines[C]//Progress in Propulsion Physics-Volume 11. Les Ulis, France: EDP Sciences, 2019, 11: 295-316.
    [75] LEONARDI M,NASUTI F,DI MATTEO F,et al. A methodology to study the possible occurrence of chugging in liquid rocket engines during transient start-up[J]. Acta Astronautica,2017,139: 344-356. doi: 10.1016/j.actaastro.2017.07.027
    [76] SIRIGNANO W A. Driving mechanisms for combustion instability[J]. Combustion Science and Technology,2015,187(1/2): 162-205.
    [77] PRIEM R J, HEIDMANN M F. Propellant vaporization as a design criterion for rocket-engine combustion chambers[R]. NASA-TR-R-67, 1960.
    [78] PRIEM R J, GUENTERT D C. Combustion instability limits determined by a nonlinear theory and a One-Dimensional model[R]. NASA-TD-N-1409, 1962.
    [79] WEBBER W T. Calculation of low-frequency unsteady behavior of liquid rockets from droplet combustion parameters[J]. Journal of Spacecraft and Rockets,1972,9(4): 231-237. doi: 10.2514/3.61660
    [80] TONG A Y,SIRIGNANO W A. Oscillatory vaporization of fuel droplets in an unstable combustor[J]. Journal of Propulsion and Power,1989,5(3): 257-261. doi: 10.2514/3.23146
    [81] ABRAMZON B,SIRIGNANO W A. Droplet vaporization model for spray combustion calculations[J]. International Journal of Heat and Mass Transfer,1989,32(9): 1605-1618. doi: 10.1016/0017-9310(89)90043-4
    [82] BHATIA R,SIRIGNANO W A. One-dimensional analysis of liquid-fueled combustion instability[J]. Journal of Propulsion and Power,1991,7(6): 953-961. doi: 10.2514/3.23413
    [83] HSIAO G C,MENG Hua,YANG V. Pressure-coupled vaporization response of n-pentane fuel droplet at subcritical and supercritical conditions[J]. Proceedings of the Combustion Institute,2011,33(2): 1997-2003. doi: 10.1016/j.proci.2010.06.049
    [84] ANANI K,PRUD'HOMME R,HOUNKONNOU M N. Dynamic response of a vaporizing spray to pressure oscillations: approximate analytical solutions[J]. Combustion and Flame,2018,193: 295-305. doi: 10.1016/j.combustflame.2018.03.015
    [85] 苏凌宇. 基于液滴蒸发过程的空气加热器低频不稳定燃烧研究[D]. 长沙: 国防科学技术大学, 2009.

    SU Lingyu. The study of low-frequency combustion instability in air-heater based on droplet evaporation[D]. Changsha: National University of Defense Technology, 2009. (in Chinese)
    [86] 汪广旭,谭永华,庄逢辰,等. 自燃推进剂模型燃烧室高频纵向燃烧不稳定性[J]. 航空动力学报,2020,35(8): 1578-1585. doi: 10.13224/j.cnki.jasp.2020.08.002

    WANG Guangxu,TAN Yonghua,ZHUANG Fengchen,et al. High frequency longitudinal combustion instability of modeled hypergolic propellants combustor[J]. Journal of Aerospace Power,2020,35(8): 1578-1585. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.08.002
    [87] 汪广旭,谭永华,陈建华,等. 考虑喷注流强分布的纵向稳定性建模与分析[J]. 航空学报,2021,42(6): 124510.

    WANG Guangxu,TAN Yonghua,CHEN Jianhua,et al. Modeling and analysis of longitudinal stability considering injection intensity distribution[J]. Acta Aeronautica et Astronautica Sinica,2021,42(6): 124510. (in Chinese)
    [88] LI Jingxuan,XIA Yu,MORGANS A S,et al. Numerical prediction of combustion instability limit cycle oscillations for a combustor with a long flame[J]. Combustion and Flame,2017,185: 28-43. doi: 10.1016/j.combustflame.2017.06.018
    [89] HAN Xingsi,MORGANS A S. Simulation of the flame describing function of a turbulent premixed flame using an open-source LES solver[J]. Combustion and Flame,2015,162(5): 1778-1792. doi: 10.1016/j.combustflame.2014.11.039
    [90] FREZZOTTI M L, NASUTI F, HUANG Cheng, et al. Extraction of response function from numerical simulations and their use for longitudinal combustion instability modeling[R]. AIAA-2017-1338, 2017.
    [91] FREZZOTTI M L,NASUTI F,HUANG Cheng,et al. Quasi-1D modeling of heat release for the study of longitudinal combustion instability[J]. Aerospace Science and Technology,2018,75: 261-270. doi: 10.1016/j.ast.2018.02.001
    [92] FREZZOTTI M L, NASUTI F, HUANG Cheng, et al. Determination of heat release response function from 2D hybrid RANS-LES data for the CVRC combustor[R]. AIAA-2015-3841, 2015.
    [93] D’ALESSANDRO S, FEDELI G, TONTI F, et al. Low-order modeling of combustion instability applied to cryogenic propellants[R]. EUCASS-2019-617, 2019.
    [94] FREZZOTTI M L, D'ALESSANDRO S, FAVINI B, et al. Driving mechanisms in low order modeling of longitudinal combustion instability[R]. AIAA-2018-4678, 2018.
    [95] GONZALEZ-FLESCA M,SCOUFLAIRE P,SCHMITT T,et al. Reduced order modeling approach to combustion instabilities of liquid rocket engines[J]. AIAA Journal,2018,56(12): 4845-4857. doi: 10.2514/1.J057098
    [96] YOON M. Combustion instability analysis from the perspective of acoustic impedance[J]. Journal of Sound and Vibration,2020,483: 115500. doi: 10.1016/j.jsv.2020.115500
  • 加载中
图(17)
计量
  • 文章访问数:  266
  • HTML浏览量:  73
  • PDF量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-20
  • 网络出版日期:  2023-09-06

目录

    /

    返回文章
    返回