留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短舱扰流片对螺旋桨飞机的失速减缓研究

温庆 杨康智 魏猛 程志航 贾重任

温庆, 杨康智, 魏猛, 等. 短舱扰流片对螺旋桨飞机的失速减缓研究[J]. 航空动力学报, 2023, 38(11):2610-2617 doi: 10.13224/j.cnki.jasp.20220043
引用本文: 温庆, 杨康智, 魏猛, 等. 短舱扰流片对螺旋桨飞机的失速减缓研究[J]. 航空动力学报, 2023, 38(11):2610-2617 doi: 10.13224/j.cnki.jasp.20220043
WEN Qing, YANG Kangzhi, WEI Meng, et al. Research on stall deceleration for nacelle strake design of engine propeller aircraft[J]. Journal of Aerospace Power, 2023, 38(11):2610-2617 doi: 10.13224/j.cnki.jasp.20220043
Citation: WEN Qing, YANG Kangzhi, WEI Meng, et al. Research on stall deceleration for nacelle strake design of engine propeller aircraft[J]. Journal of Aerospace Power, 2023, 38(11):2610-2617 doi: 10.13224/j.cnki.jasp.20220043

短舱扰流片对螺旋桨飞机的失速减缓研究

doi: 10.13224/j.cnki.jasp.20220043
详细信息
    作者简介:

    温庆(1983-),男,高级工程师,硕士,主要从事螺旋桨飞机气动力设计与评估方面的研究

  • 中图分类号: V211.4

Research on stall deceleration for nacelle strake design of engine propeller aircraft

  • 摘要:

    翼吊螺旋桨发动机的短舱对飞机的升力失速特性有明显的影响,采用数值模拟方法研究了短舱扰流片对失速的影响效果。数值仿真和风洞试验表明,在零推力状态,某大型四发螺旋桨飞机在超过失速迎角以后,内外发动机之间的机翼首先分离,并快速推进到机翼前缘,失速以后升力损失达到最大升力系数的30%左右。为了限制机翼的分离速度,在外发短舱的内侧,安装了一个扰流片。仿真结果表明,在最佳设计位置,明显改善了失速特性,与无扰流片状态相比失速以后升力损失减小50%左右,失速迎角没有明显变化。不同的扰流片安装位置对失速的改善效果差异明显,从最佳位置向周向以及螺旋桨方向移动会造成扰流片失效,向机翼方向移动对改善机翼分离速度有效,但是会明显降低失速迎角,向机翼方向移动后,受周向位置的影响减小。针对最佳设计位置开展了着陆构型零推力状态的风洞试验验证,加装扰流片以后,机翼失速后的升力损失由0.92降低至0.42左右,升力损失减少54%,与数值仿真结论基本一致。

     

  • 图 1  CFD计算模型

    Figure 1.  CFD computational model

    图 2  试验模型在风洞中的安装

    Figure 2.  Installation of test model in wind tunnel

    图 3  无动力状态计算和试验结果对比(半模)

    Figure 3.  Comparison of calculation and test results in no-dynamic state (half mode)

    图 4  短舱诱导涡量分布和机翼摩擦因数分布

    Figure 4.  Distribution of induced vorticity in nacelle and friction coefficient of wing

    图 5  机翼表面压力系数分布及流线图

    Figure 5.  Surface pressure coefficient distribution and streamline of wing

    图 6  机翼前方剖面当地迎角分布

    Figure 6.  Local angle of attack distribution in the forward section of the wing

    图 7  机翼吸力峰极值分布

    Figure 7.  Maximum distribution of wing suction peak

    图 8  机翼分离区域

    Figure 8.  Wing separation area

    图 9  扰流片安装角度

    Figure 9.  Installation angle of strake

    图 10  扰流片外形参数(单位:mm)

    Figure 10.  Configuration parameters of strake (unit:mm)

    图 11  扰流片的安装位置

    Figure 11.  Position of the strake

    图 12  扰流片最佳位置与无扰流片的升力系数对比

    Figure 12.  Comparison of lift coefficient between optimum position of nacelle strake and no strake

    图 13  扰流片最佳位置机翼分离情况($ \alpha $=18°)

    Figure 13.  Separation of wing in optimum position of strake ($ \alpha $=18°)

    图 14  扰流片和短舱诱导涡量分布以及机翼摩擦因数分布

    Figure 14.  Distribution of induced vorticity and friction coefficient of wing in nacelle strake and nacelle

    图 15  有无扰流片的机翼压力分布极值对比

    Figure 15.  Comparison of extreme values of wing pressure distribution with and without strake

    图 16  巡航状态扰流片流线

    Figure 16.  Nacelle strake streamline of cruise state

    图 17  短舱扰流片的安装

    Figure 17.  Installation of nacelle strake in nacelle

    图 18  有无短舱扰流片的风洞试验结果对比

    Figure 18.  Comparison of wind tunnel test results with and without strake

    表  1  主要几何参数

    Table  1.   Principal geometric parameters

    参数数值
    机翼面积/m2172
    机翼展长/m39.2
    机翼平均气动弦长/m4.81
    机翼展弦比9.1
    下载: 导出CSV

    表  2  不同扰流片安装位置的效果

    Table  2.   Effect of different positions of strake

    周向
    位移/(°)
    流向位移/cm
    1550−5−10−15
    −5NNF1/PF3/P
    0NNF1/PF1/PF2/PF3/P
    5NNF0/PF1/PF3/P
    10NNF1/PF2.5/P
    下载: 导出CSV
  • [1] 赵帅,段卓毅,李杰,等. 螺旋桨旋转方向对飞机俯仰力矩特性的影响[J]. 航空学报,2020,41(8): 123619. doi: 10.7527/S1000-6893.2020.23619

    ZHAO Shuai,DUAN Zhuoyi,LI Jie,et al. Effects of propeller rotation direction on pitching moment characteristics of aircraft[J]. Acta Aeronautica et Astronautica Sinica,2020,41(8): 123619. (in Chinese) doi: 10.7527/S1000-6893.2020.23619
    [2] LEVIN A D, SMITH R C. Installed nacelle drag-improvement tests of an M=0.8 turboprop transport configuration[R]. NASA TM-84302, 1985.
    [3] ZIEMIANSKI J A, WHITLOW J B. NASA/Industry advanced turboprop technology program[R]. NASA TM-100929, 1988.
    [4] DUGAN J BF, MILLER B A, GRABER E J, et al. The NASA high-speed turboprop program[R]. NASA TM-81561,1980.
    [5] CARLSON J, PENDERGRAFT O, BARTLETT G. Comparison of advanced turboprop installation on swept and unswept supercritical wings at transonic speeds[R]. AIAA1985-1264, 1985.
    [6] 史文博,李杰. 螺旋桨安装效应对无人机气动特性影响[J]. 航空动力学报,2020,35(3): 611-619.

    SHI Wenbo,LI Jie. Impacts of propeller installation effect on aerodynamic performances for UAV[J]. Journal of Aerospace Power,2020,35(3): 611-619. (in Chinese)
    [7] QIU Yasong,BAI Junqiang,QIAO Lei. Aerodynamic effects of wing-mounted engine nacelle on high-lift configuration of turboprop airliner[J]. Journal of Aircraft,2018,55(3): 1082-1089. doi: 10.2514/1.C034529
    [8] 黄领才,雍明培. 水陆两栖飞机的关键技术和产业应用前景[J]. 航空学报,2019,40(1): 522708.

    HUANG Lingcai,YONG Mingpei. Key technologies and industrial application prospects of amphibian aircraft[J]. Acta Aeronautica et Astronautica Sinica,2019,40(1): 522708. (in Chinese)
    [9] VELDHUIS L L M. Propeller wing aerodynamic interference[D]. Delft, Netherlands: Delft University of Technology, 2005.
    [10] PETROV A. Aerodynamics of STOL airplanes with powered high-lift systems[R]. Edinburgh, UK: ICAS 2012 Congress, 2012.
    [11] 刘毅,赵晓霞,欧阳绍修,等. 某运输机加装失速条气动特性研究[J]. 实验流体力学,2016,30(5): 36-41.

    LIU Yi,ZHAO Xiaoxia,OUYANG Shaoxiu,et al. Research on aerodynamic characteristics of transport aircraft with stall strips[J]. Journal of Experiments in Fluid Mechanics,2016,30(5): 36-41. (in Chinese)
    [12] 周莉,文崧棋,王占学. 螺旋桨滑流的三维流场特性数值研究[J]. 航空动力学报,2018,33(4): 832-840.

    ZHOU Li,WEN Songqi,WANG Zhanxue. Numerical investigation on three-dimensional flow-field characteristics of propeller slipstream[J]. Journal of Aerospace Power,2018,33(4): 832-840. (in Chinese)
    [13] KELLER D,RUDNIK R. Numerical investigation of engine effects on a transport aircraft with circulation control[J]. Journal of Aircraft,2015,52(2): 421-438. doi: 10.2514/1.C032724
    [14] 周诗睿,李博,周杨,等. 螺旋桨滑流对发动机进气道气动性能的影响[J]. 航空动力学报,2019,34(6): 1322-1333.

    ZHOU Shirui,LI Bo,ZHOU Yang,et al. Aerodynamic performance influence of propeller slipstream on engine intake[J]. Journal of Aerospace Power,2019,34(6): 1322-1333. (in Chinese)
    [15] VON H G, SCHADE N, DER J, et al. CFD-prediction of maximum-lift-effects on realistic high-lift-commercial-aircraft-configurations within the European Project EUROLIFT II[R]. AIAA2007-4299, 2007
    [16] RUDNIK R. Stall behaviour of the EUROLIFT high lift configurations[R]. AIAA2008-836, 2008.
    [17] EMUNDS R. Leading edge vortex system of the A380 at high angles of attack in landing configuration, third symposium: simulation of wing and nacelle stall[D]. Braunschweig, Germany: Technical University of Braunschweig, 2012.
    [18] 张文升,陈海昕,张宇飞,等. 短舱扰流片对运输机增升装置气动特性的影响[J]. 航空学报,2013,34(1): 76-85.

    ZHANG Wensheng,CHEN Haixin,ZHANG Yufei,et al. Nacelle strake’s aerodynamic characteristics effects on high-lift configuration of transport aircraft[J]. Acta Aeronautica et Astronautica Sinica,2013,34(1): 76-85. (in Chinese)
    [19] DANIEL R. Aerodynamic design of the A400M high-lift system[R]. Anchorage, US: 26th international congress of the aeronautical sciences, 2008.
    [20] KELLER D,RUDNIK R. Numerical investigations of aerodynamic properties of a propeller blown circulation control system on a high wing aircraft[J]. CEAS Aeronautical Journal,2016,7(3): 441-454. doi: 10.1007/s13272-016-0195-2
    [21] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[R]. AIAA1992-439, 1992.
    [22] SPALART P R,SHUR M. On the sensitization of turbulence models to rotation and curvature[J]. Aerospace Science and Technology,1997,1(5): 297-302. doi: 10.1016/S1270-9638(97)90051-1
    [23] CHURCHFIELD M J,BLAISDELL G A. Numerical simulations of a wingtip vortex in the near field[J]. Journal of Aircraft,2009,46(1): 230-243. doi: 10.2514/1.38086
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  42
  • HTML浏览量:  21
  • PDF量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-24
  • 网络出版日期:  2023-09-01

目录

    /

    返回文章
    返回