Research on stall deceleration for nacelle strake design of engine propeller aircraft
-
摘要:
翼吊螺旋桨发动机的短舱对飞机的升力失速特性有明显的影响,采用数值模拟方法研究了短舱扰流片对失速的影响效果。数值仿真和风洞试验表明,在零推力状态,某大型四发螺旋桨飞机在超过失速迎角以后,内外发动机之间的机翼首先分离,并快速推进到机翼前缘,失速以后升力损失达到最大升力系数的30%左右。为了限制机翼的分离速度,在外发短舱的内侧,安装了一个扰流片。仿真结果表明,在最佳设计位置,明显改善了失速特性,与无扰流片状态相比失速以后升力损失减小50%左右,失速迎角没有明显变化。不同的扰流片安装位置对失速的改善效果差异明显,从最佳位置向周向以及螺旋桨方向移动会造成扰流片失效,向机翼方向移动对改善机翼分离速度有效,但是会明显降低失速迎角,向机翼方向移动后,受周向位置的影响减小。针对最佳设计位置开展了着陆构型零推力状态的风洞试验验证,加装扰流片以后,机翼失速后的升力损失由0.92降低至0.42左右,升力损失减少54%,与数值仿真结论基本一致。
Abstract:The effect of nacelle strake on stall was studied by numerical simulation. Numerical simulation and wind tunnel test showed that in the state of zero thrust, after a large four engine propeller aircraft exceeded the stall angle of attack, the wings between the internal and external engines first separated and quickly advanced to the leading edge of the wing, and the lift loss reached about 30%. In order to limit the separation speed of the wing, a nacelle strake was installed inside the outboard engine nacelle. The simulation results showed that the stall characteristics were significantly improved at the optimal design position, the lift loss after stall was reduced by about 50% compared with the state without nacelle strake, and the stall angle of attack did not change significantly. Different installation positions of nacelle strakes had obvious differences in improving stall; movement from the best position to the circumferential direction and propeller direction caused the failure of nacelle strake. Movement to the wing direction wa effective to improve the wing separation speed, but it significantly reduced the stall angle of attack. After moving to the wing direction, the influence of circumferential position was reduced. A wind tunnel test was carried out to verify the landing configuration in zero-thrust condition according to the optimal design position. After adding the nacelle strake, the lift loss of the airfoil after stall was reduced from 0.92 to about 0.42, and the lift loss was reduced by 54%, which was basically consistent with the numerical simulation conclusion.
-
Key words:
- propeller /
- nacelle /
- nacelle strake /
- installation position /
- stall /
- lift loss
-
表 1 主要几何参数
Table 1. Principal geometric parameters
参数 数值 机翼面积/m2 172 机翼展长/m 39.2 机翼平均气动弦长/m 4.81 机翼展弦比 9.1 表 2 不同扰流片安装位置的效果
Table 2. Effect of different positions of strake
周向
位移/(°)流向位移/cm 15 5 0 −5 −10 −15 −5 N N F1/P F3/P 0 N N F1/P F1/P F2/P F3/P 5 N N F0/P F1/P F3/P 10 N N F1/P F2.5/P -
[1] 赵帅,段卓毅,李杰,等. 螺旋桨旋转方向对飞机俯仰力矩特性的影响[J]. 航空学报,2020,41(8): 123619. doi: 10.7527/S1000-6893.2020.23619ZHAO Shuai,DUAN Zhuoyi,LI Jie,et al. Effects of propeller rotation direction on pitching moment characteristics of aircraft[J]. Acta Aeronautica et Astronautica Sinica,2020,41(8): 123619. (in Chinese) doi: 10.7527/S1000-6893.2020.23619 [2] LEVIN A D, SMITH R C. Installed nacelle drag-improvement tests of an M=0.8 turboprop transport configuration[R]. NASA TM-84302, 1985. [3] ZIEMIANSKI J A, WHITLOW J B. NASA/Industry advanced turboprop technology program[R]. NASA TM-100929, 1988. [4] DUGAN J BF, MILLER B A, GRABER E J, et al. The NASA high-speed turboprop program[R]. NASA TM-81561,1980. [5] CARLSON J, PENDERGRAFT O, BARTLETT G. Comparison of advanced turboprop installation on swept and unswept supercritical wings at transonic speeds[R]. AIAA1985-1264, 1985. [6] 史文博,李杰. 螺旋桨安装效应对无人机气动特性影响[J]. 航空动力学报,2020,35(3): 611-619.SHI Wenbo,LI Jie. Impacts of propeller installation effect on aerodynamic performances for UAV[J]. Journal of Aerospace Power,2020,35(3): 611-619. (in Chinese) [7] QIU Yasong,BAI Junqiang,QIAO Lei. Aerodynamic effects of wing-mounted engine nacelle on high-lift configuration of turboprop airliner[J]. Journal of Aircraft,2018,55(3): 1082-1089. doi: 10.2514/1.C034529 [8] 黄领才,雍明培. 水陆两栖飞机的关键技术和产业应用前景[J]. 航空学报,2019,40(1): 522708.HUANG Lingcai,YONG Mingpei. Key technologies and industrial application prospects of amphibian aircraft[J]. Acta Aeronautica et Astronautica Sinica,2019,40(1): 522708. (in Chinese) [9] VELDHUIS L L M. Propeller wing aerodynamic interference[D]. Delft, Netherlands: Delft University of Technology, 2005. [10] PETROV A. Aerodynamics of STOL airplanes with powered high-lift systems[R]. Edinburgh, UK: ICAS 2012 Congress, 2012. [11] 刘毅,赵晓霞,欧阳绍修,等. 某运输机加装失速条气动特性研究[J]. 实验流体力学,2016,30(5): 36-41.LIU Yi,ZHAO Xiaoxia,OUYANG Shaoxiu,et al. Research on aerodynamic characteristics of transport aircraft with stall strips[J]. Journal of Experiments in Fluid Mechanics,2016,30(5): 36-41. (in Chinese) [12] 周莉,文崧棋,王占学. 螺旋桨滑流的三维流场特性数值研究[J]. 航空动力学报,2018,33(4): 832-840.ZHOU Li,WEN Songqi,WANG Zhanxue. Numerical investigation on three-dimensional flow-field characteristics of propeller slipstream[J]. Journal of Aerospace Power,2018,33(4): 832-840. (in Chinese) [13] KELLER D,RUDNIK R. Numerical investigation of engine effects on a transport aircraft with circulation control[J]. Journal of Aircraft,2015,52(2): 421-438. doi: 10.2514/1.C032724 [14] 周诗睿,李博,周杨,等. 螺旋桨滑流对发动机进气道气动性能的影响[J]. 航空动力学报,2019,34(6): 1322-1333.ZHOU Shirui,LI Bo,ZHOU Yang,et al. Aerodynamic performance influence of propeller slipstream on engine intake[J]. Journal of Aerospace Power,2019,34(6): 1322-1333. (in Chinese) [15] VON H G, SCHADE N, DER J, et al. CFD-prediction of maximum-lift-effects on realistic high-lift-commercial-aircraft-configurations within the European Project EUROLIFT II[R]. AIAA2007-4299, 2007 [16] RUDNIK R. Stall behaviour of the EUROLIFT high lift configurations[R]. AIAA2008-836, 2008. [17] EMUNDS R. Leading edge vortex system of the A380 at high angles of attack in landing configuration, third symposium: simulation of wing and nacelle stall[D]. Braunschweig, Germany: Technical University of Braunschweig, 2012. [18] 张文升,陈海昕,张宇飞,等. 短舱扰流片对运输机增升装置气动特性的影响[J]. 航空学报,2013,34(1): 76-85.ZHANG Wensheng,CHEN Haixin,ZHANG Yufei,et al. Nacelle strake’s aerodynamic characteristics effects on high-lift configuration of transport aircraft[J]. Acta Aeronautica et Astronautica Sinica,2013,34(1): 76-85. (in Chinese) [19] DANIEL R. Aerodynamic design of the A400M high-lift system[R]. Anchorage, US: 26th international congress of the aeronautical sciences, 2008. [20] KELLER D,RUDNIK R. Numerical investigations of aerodynamic properties of a propeller blown circulation control system on a high wing aircraft[J]. CEAS Aeronautical Journal,2016,7(3): 441-454. doi: 10.1007/s13272-016-0195-2 [21] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[R]. AIAA1992-439, 1992. [22] SPALART P R,SHUR M. On the sensitization of turbulence models to rotation and curvature[J]. Aerospace Science and Technology,1997,1(5): 297-302. doi: 10.1016/S1270-9638(97)90051-1 [23] CHURCHFIELD M J,BLAISDELL G A. Numerical simulations of a wingtip vortex in the near field[J]. Journal of Aircraft,2009,46(1): 230-243. doi: 10.2514/1.38086 -