Research on experimental simulation method of non-uniform inflow under high temperature and strong swirling condition
-
摘要:
针对新一代一体化加力燃烧室进口高温强余旋非均匀进气特点,设计了一种可用于模拟一体化加力燃烧室真实进气条件的高温强余旋非均匀进口流场发生装置,该装置能够模拟真实的一体化加力燃烧室进口来流条件。同时开展了耦合进口马赫数、温度和余旋角度的不均匀流场数值模拟研究,评估了非均匀来流生成装置设计、测量方法与评价指标的有效性,并通过试验结果验证了数值模拟的准确性。结果表明:数值计算所得余旋角误差在壁面附近约为±2°,这是由于数值计算低估了壁面的耗散作用,而在中心区域则在优于±2°;同样在马赫数不均匀模拟中,在主流区域误差在10%以内;此外在对于温度不均匀性的模拟中,数值仿真表现出了较大的误差,这是因为数值计算中未考虑壁面向外界的传热过程。综合来看,本文所提出的高温强余旋非均匀生成装置可生成用于模拟下一代一体化加力燃烧室进口所面临的真实复杂不均匀进口流场条件,所采用的数值模拟方法可以较为准确地揭示流场非均匀特性。
-
关键词:
- 一体化加力燃烧室 /
- 高温强余旋条件 /
- 非均匀进口流场发生装置 /
- 非均匀空间分布 /
- 均匀性评价指标
Abstract:In response to the characteristics of high-temperature, strong swirl, and non-uniform inflow at the intake of the new generation integrated afterburner, a high-temperature, strong-swirl, non-uniform inlet flow field generation device that can simulate the real intake conditions of an integrated afterburner was designed. At the same time, numerical simulations of the non-uniform flow field coupling inlet Mach number, temperature, and swirl angle were conducted to assess the effectiveness of the design of the non-uniform flow generation device, measurement methods, and evaluation criteria. The accuracy of the numerical simulations was verified through experimental results. The results showed that the numerical calculation of the swirl angle error near the wall was approximately ±2° due to the underestimation of wall dissipation in the numerical calculations, while it was better than ±2° in the central area. Similarly, in the simulation of Mach number non-uniformity, the error in the mainstream area was within 10%; in addition, the simulation of temperature non-uniformity showed larger errors, due to the numerical calculations not considering the heat transfer process from the wall to the outside. Overally, the high-temperature, strong-swirl, non-uniform generation device proposed can generate the real complex non-uniform inlet flow field conditions faced by the intake of the next-generation integrated afterburner. The numerical simulation method used can reveal the flow field's non-uniform characteristics quite accurately.
-
表 1 工况参数
Table 1. Working condition parameters
测量截面
轴向马赫数
Ma主流进气
总温/K冷却气
总温/K主流流量/
(kg/s)冷却气流量/
(kg/s)0.11 400 300 0.927 0.130 0.13 400 300 1.160 0.164 0.15 400 300 1.391 0.196 0.17 400 300 1.623 0.228 0.05 500 300 0.346 0.090 -
[1] CLEMENTS T R,GRAVES C B. Augmentor burner: US5385015[P]. 1995-01-31. [2] 邓洪伟,尚守堂,金海,等. 航空发动机隐身技术分析与论述[J]. 航空科学技术,2017,28(10): 1-7. DENG Hongwei,SHANG Shoutang,JIN Hai,et al. Analysis and discussion on stealth technology of aero engine[J]. Aeronautical Science & Technology,2017,28(10): 1-7. (in ChineseDENG Hongwei, SHANG Shoutang, JIN Hai, et al. Analysis and discussion on stealth technology of aero engine[J]. Aeronautical Science & Technology, 2017, 28(10): 1-7. (in Chinese) [3] 林爽,吴榕,郑睿书. 加力燃烧室一体化设计[J]. 航空动力,2020(6): 31-34. LIN Shuang,WU Rong,ZHENG Ruishu. Integrated design of afterburner[J]. Aerospace Power,2020(6): 31-34. (in ChineseLIN Shuang, WU Rong, ZHENG Ruishu. Integrated design of afterburner[J]. Aerospace Power, 2020(6): 31-34. (in Chinese) [4] 夏姣辉,杨谦,王慧汝,等. 涡扇发动机加力燃烧技术发展分析[J]. 航空动力,2020(4): 17-21. XIA Jiaohui,YANG Qian,WANG Huiru,et al. Development analysis to afterburner combustion technology of turbofan[J]. Aerospace Power,2020(4): 17-21. (in ChineseXIA Jiaohui, YANG Qian, WANG Huiru, et al. Development analysis to afterburner combustion technology of turbofan[J]. Aerospace Power, 2020(4): 17-21. (in Chinese) [5] 张孝春,孙雨超,刘涛. 先进加力燃烧室设计技术综述[J]. 航空发动机,2014,40(2): 24-30,60. ZHANG Xiaochun,SUN Yuchao,LIU Tao. Summary of advanced afterburner design technology[J]. Aeroengine,2014,40(2): 24-30,60. (in ChineseZHANG Xiaochun, SUN Yuchao, LIU Tao. Summary of advanced afterburner design technology[J]. Aeroengine, 2014, 40(2): 24-30, 60. (in Chinese) [6] 尹成茗,张荣春,樊未军,等. 一种一体化加力燃烧室的数值模拟[J]. 航空动力学报,2018,33(2): 470-476. YIN Chengming,ZHANG Rongchun,FAN Weijun,et al. Numerical simulation on a type of the integrated afterburner[J]. Journal of Aerospace Power,2018,33(2): 470-476. (in ChineseYIN Chengming, ZHANG Rongchun, FAN Weijun, et al. Numerical simulation on a type of the integrated afterburner[J]. Journal of Aerospace Power, 2018, 33(2): 470-476. (in Chinese) [7] 林爽,吴榕,阮盛伟,等. 不同结构一体化加力燃烧室冷态流场与性能仿真[J]. 飞机设计,2021,41(5): 53-58. LIN Shuang,WU Rong,RUAN Shengwei,et al. Investigation on cold flow field and performance of afterburner with different structures[J]. Aircraft Design,2021,41(5): 53-58. (in ChineseLIN Shuang, WU Rong, RUAN Shengwei, et al. Investigation on cold flow field and performance of afterburner with different structures[J]. Aircraft Design, 2021, 41(5): 53-58. (in Chinese) [8] 贾翔中,单勇,徐兴平,等. 一体化加力燃烧室冷态流动特性数值研究[J]. 航空动力学报,2021,36(7): 1472-1480. JIA Xiangzhong,SHAN Yong,XU Xingping,et al. Numerical study on cold flow characteristics of integrated afterburner[J]. Journal of Aerospace Power,2021,36(7): 1472-1480. (in ChineseJIA Xiangzhong, SHAN Yong, XU Xingping, et al. Numerical study on cold flow characteristics of integrated afterburner[J]. Journal of Aerospace Power, 2021, 36(7): 1472-1480. (in Chinese) [9] STOCKS C P,BISSINGER N C. The design and development of the tornado engine air intake[R]. France: AGARD Conference Proceedings,1981. [10] GENSSLER H P,MEYER W,FOTTNER L. Development of intake swirl generators for turbo jet engine testing[J]. Development of Intake Swirl Generators for Turbo Jet Engine Testing,1987,26(8): 82-118. [11] BEALE D,CRAMER K,KING P. Development of improved methods for simulating aircraft inlet distortion in turbine engine ground tests (invited)[C]//Proceedings of the 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston,Virigina: AIAA,2002. [12] SMITH R E Jr. Marrying airframes and engines in ground test facilities-an evolutionary revolution[J]. Journal of Aircraft,1996,33(4): 649-679. doi: 10.2514/3.47001 [13] PANDOLFI M,COLASURDO G. A contribution to the prediction of distorted flow in axial compressors[R]. Berlin: Recent Developments in Theoretical and Experimental Fluid Mechanics,1979. [14] BRAITHWAITE W M,DICUS J H,MOSS J E,Jr. Evaluation with a turbofan engine of air jets as a steady-state inlet flow distortion device technical memorandum: NASA-TM-X-1955[R]. Cleveland,Obio: Lewis Research Center,1970. [15] MCILVEEN M. Further test results with the airjet distortion generator-a new tool for aircraft turbine engine testing: AIAA 1979-1185[R]. Las Vegas,US: 15th Joint Propulsion Conference,1979. [16] BRAITHWAITE W M,SOEDER R H. Combined pressure and temperature distortion effects on internal flow of a turbofan engine[J]. Journal of Aircraft,1980,17(7): 468-472. doi: 10.2514/3.57927 [17] MEHALIC C. Effect of spatial inlet temperature and pressure distortion on turbofan engine stability[C]//Proceedings of the 24th Joint Propulsion Conference. Reston,Virigina: AIAA,1988. [18] PAUL A R,UPADHYAY R R,JAIN A. A novel calibration algorithm for five-hole pressure probe[J]. International Journal of Engineering,Science and Technology,2011,3(2): 96-10. -