留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温强余旋非均匀来流条件模拟方法研究

刘云鹏 张举星 邸东 颜应文

刘云鹏, 张举星, 邸东, 等. 高温强余旋非均匀来流条件模拟方法研究[J]. 航空动力学报, 2024, 39(8):20220071 doi: 10.13224/j.cnki.jasp.20220071
引用本文: 刘云鹏, 张举星, 邸东, 等. 高温强余旋非均匀来流条件模拟方法研究[J]. 航空动力学报, 2024, 39(8):20220071 doi: 10.13224/j.cnki.jasp.20220071
LIU Yunpeng, ZHANG Juxing, DI Dong, et al. Research on experimental simulation method of non-uniform inflow under high temperature and strong swirling condition[J]. Journal of Aerospace Power, 2024, 39(8):20220071 doi: 10.13224/j.cnki.jasp.20220071
Citation: LIU Yunpeng, ZHANG Juxing, DI Dong, et al. Research on experimental simulation method of non-uniform inflow under high temperature and strong swirling condition[J]. Journal of Aerospace Power, 2024, 39(8):20220071 doi: 10.13224/j.cnki.jasp.20220071

高温强余旋非均匀来流条件模拟方法研究

doi: 10.13224/j.cnki.jasp.20220071
基金项目: 国家科技重大专项(J2019-Ⅲ-0004-0047)
详细信息
    作者简介:

    刘云鹏(1992-),男,讲师、硕士生导师,博士,主要从事航空发动机燃烧技术、燃烧不稳定相关研究。E-mail:ypliu@nuaa.edu.cn

    通讯作者:

    颜应文(1978-),男,教授、博士生导师,博士,主要从事航空发动机燃烧技术相关研究。E-mail:yanyw@nuaa.edu.cn

  • 中图分类号: V231.2

Research on experimental simulation method of non-uniform inflow under high temperature and strong swirling condition

  • 摘要:

    针对新一代一体化加力燃烧室进口高温强余旋非均匀进气特点,设计了一种可用于模拟一体化加力燃烧室真实进气条件的高温强余旋非均匀进口流场发生装置,该装置能够模拟真实的一体化加力燃烧室进口来流条件。同时开展了耦合进口马赫数、温度和余旋角度的不均匀流场数值模拟研究,评估了非均匀来流生成装置设计、测量方法与评价指标的有效性,并通过试验结果验证了数值模拟的准确性。结果表明,数值计算所得余旋角误差在壁面附近约为±2°,这是由于数值计算低估了壁面的耗散作用,而在中心区域则在优于±2°;同样在马赫数不均匀模拟中,在主流区域误差在10%以内;此外在对于温度不均匀性的模拟中,数值仿真表现出了较大的误差,这是因为数值计算中未考虑壁面向外界的传热过程。综合来看,本文所提出的高温强余旋非均匀生成装置可生成用于模拟下一代一体化加力燃烧室进口所面临的真实复杂不均匀进口流场条件,所采用的数值模拟方法可以较为准确的揭示流场非均匀特性。

     

  • 图 1  马赫数不均匀发生器结构示意图

    Figure 1.  Structure diagram of Mach number non-uniform generator

    图 2  温度与余旋角度耦合不均匀发生器示意图

    Figure 2.  Schematic diagram of temperature and co-rotation angle coupling non-uniform generator

    图 3  试验装置示意图

    Figure 3.  Schematic diagram of experiment device

    图 4  计算域模型示意图

    Figure 4.  Schematic diagram of computational domain model

    图 5  余旋角定义

    Figure 5.  Definition of corotation angle

    图 6  五孔探针校准特性

    Figure 6.  Calibration characteristics of five-hole probe

    图 7  不同高进口平均马赫数下试验(Exp.)和数值计算(CFD)余旋角分布对比

    Figure 7.  Comparison of experiment (Exp.) and numerical calculation (CFD) of co-rotation angle distribution under different inlet mean Mach number

    图 8  试验和数值计算径向余旋角对比曲线位置

    Figure 8.  Experiment and numerical calculation of radial co-rotation angle comparison curve position

    图 9  不同进口平均马赫数下径向余旋角

    Figure 9.  Radial co-rotation angle under different inlet mean Mach number

    图 10  不同进口平均马赫数余旋角不均匀指数对比

    Figure 10.  Non-uniformity index of the co-rotation angle under different inlet mean Mach number

    图 11  不同进口平均马赫数下的马赫数分布

    Figure 11.  Comparison of Mach number distribution under different inlet mean Mach number

    图 12  试验和数值计算径向马赫数对比曲线位置

    Figure 12.  Experimental and numerical calculation of radial Mach number comparison curve position

    图 13  不同进口平均马赫数下径向马赫数分布

    Figure 13.  Radial Mach number distribution under different inlet mean Mach number

    图 14  不同进口平均马赫数下马赫数不均匀指数

    Figure 14.  Mach number non-uniformity index under different inlet mean Mach number

    图 15  试验和数值计算总温分布对比

    Figure 15.  Comparison of total temperature distribution between experiment and numerical calculation

    表  1  工况参数

    Table  1.   Working condition parameters

    测量截面
    轴向马赫数
    Ma
    主流进气
    总温/K
    冷却气
    总温/K
    主流流量/
    (kg/s)
    冷却气流量/
    (kg/s)
    0.11 400 300 0.927 0.130
    0.13 400 300 1.160 0.164
    0.15 400 300 1.391 0.196
    0.17 400 300 1.623 0.228
    0.05 500 300 0.346 0.090
    下载: 导出CSV
  • [1] CLEMENTS T R,GRAVES C B. Augmentor burner: US5385015[P]. 1995-01-31.
    [2] 邓洪伟,尚守堂,金海,等. 航空发动机隐身技术分析与论述[J]. 航空科学技术,2017,28(10): 1-7. DENG Hongwei,SHANG Shoutang,JIN Hai,et al. Analysis and discussion on stealth technology of aero engine[J]. Aeronautical Science & Technology,2017,28(10): 1-7. (in Chinese

    DENG Hongwei, SHANG Shoutang, JIN Hai, et al. Analysis and discussion on stealth technology of aero engine[J]. Aeronautical Science & Technology, 2017, 28(10): 1-7. (in Chinese)
    [3] 林爽,吴榕,郑睿书. 加力燃烧室一体化设计[J]. 航空动力,2020(6): 31-34. LIN Shuang,WU Rong,ZHENG Ruishu. Integrated design of afterburner[J]. Aerospace Power,2020(6): 31-34. (in Chinese

    LIN Shuang, WU Rong, ZHENG Ruishu. Integrated design of afterburner[J]. Aerospace Power, 2020(6): 31-34. (in Chinese)
    [4] 夏姣辉,杨谦,王慧汝,等. 涡扇发动机加力燃烧技术发展分析[J]. 航空动力,2020(4): 17-21. XIA Jiaohui,YANG Qian,WANG Huiru,et al. Development analysis to afterburner combustion technology of turbofan[J]. Aerospace Power,2020(4): 17-21. (in Chinese

    XIA Jiaohui, YANG Qian, WANG Huiru, et al. Development analysis to afterburner combustion technology of turbofan[J]. Aerospace Power, 2020(4): 17-21. (in Chinese)
    [5] 张孝春,孙雨超,刘涛. 先进加力燃烧室设计技术综述[J]. 航空发动机,2014,40(2): 24-30,60. ZHANG Xiaochun,SUN Yuchao,LIU Tao. Summary of advanced afterburner design technology[J]. Aeroengine,2014,40(2): 24-30,60. (in Chinese

    ZHANG Xiaochun, SUN Yuchao, LIU Tao. Summary of advanced afterburner design technology[J]. Aeroengine, 2014, 40(2): 24-30, 60. (in Chinese)
    [6] 尹成茗,张荣春,樊未军,等. 一种一体化加力燃烧室的数值模拟[J]. 航空动力学报,2018,33(2): 470-476. YIN Chengming,ZHANG Rongchun,FAN Weijun,et al. Numerical simulation on a type of the integrated afterburner[J]. Journal of Aerospace Power,2018,33(2): 470-476. (in Chinese

    YIN Chengming, ZHANG Rongchun, FAN Weijun, et al. Numerical simulation on a type of the integrated afterburner[J]. Journal of Aerospace Power, 2018, 33(2): 470-476. (in Chinese)
    [7] 林爽,吴榕,阮盛伟,等. 不同结构一体化加力燃烧室冷态流场与性能仿真[J]. 飞机设计,2021,41(5): 53-58. LIN Shuang,WU Rong,RUAN Shengwei,et al. Investigation on cold flow field and performance of afterburner with different structures[J]. Aircraft Design,2021,41(5): 53-58. (in Chinese

    LIN Shuang, WU Rong, RUAN Shengwei, et al. Investigation on cold flow field and performance of afterburner with different structures[J]. Aircraft Design, 2021, 41(5): 53-58. (in Chinese)
    [8] 贾翔中,单勇,徐兴平,等. 一体化加力燃烧室冷态流动特性数值研究[J]. 航空动力学报,2021,36(7): 1472-1480. JIA Xiangzhong,SHAN Yong,XU Xingping,et al. Numerical study on cold flow characteristics of integrated afterburner[J]. Journal of Aerospace Power,2021,36(7): 1472-1480. (in Chinese

    JIA Xiangzhong, SHAN Yong, XU Xingping, et al. Numerical study on cold flow characteristics of integrated afterburner[J]. Journal of Aerospace Power, 2021, 36(7): 1472-1480. (in Chinese)
    [9] STOCKS C P,BISSINGER N C. The design and development of the tornado engine air intake[R]. France: AGARD Conference Proceedings,1981.
    [10] GENSSLER H P,MEYER W,FOTTNER L. Development of intake swirl generators for turbo jet engine testing[J]. Development of Intake Swirl Generators for Turbo Jet Engine Testing,1987,26(8): 82-118.
    [11] BEALE D,CRAMER K,KING P. Development of improved methods for simulating aircraft inlet distortion in turbine engine ground tests (invited)[C]//Proceedings of the 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston,Virigina: AIAA,2002.
    [12] SMITH R E Jr. Marrying airframes and engines in ground test facilities-an evolutionary revolution[J]. Journal of Aircraft,1996,33(4): 649-679. doi: 10.2514/3.47001
    [13] PANDOLFI M,COLASURDO G. A contribution to the prediction of distorted flow in axial compressors[R]. Berlin: Recent Developments in Theoretical and Experimental Fluid Mechanics,1979.
    [14] BRAITHWAITE W M,DICUS J H,MOSS J E,Jr. Evaluation with a turbofan engine of air jets as a steady-state inlet flow distortion device technical memorandum: NASA-TM-X-1955[R]. Cleveland,Obio: Lewis Research Center,1970.
    [15] MCILVEEN M. Further test results with the airjet distortion generator-a new tool for aircraft turbine engine testing: AIAA 1979-1185[R]. Las Vegas,US: 15th Joint Propulsion Conference,1979.
    [16] BRAITHWAITE W M,SOEDER R H. Combined pressure and temperature distortion effects on internal flow of a turbofan engine[J]. Journal of Aircraft,1980,17(7): 468-472. doi: 10.2514/3.57927
    [17] MEHALIC C. Effect of spatial inlet temperature and pressure distortion on turbofan engine stability[C]//Proceedings of the 24th Joint Propulsion Conference. Reston,Virigina: AIAA,1988.
    [18] PAUL A R,UPADHYAY R R,JAIN A. A novel calibration algorithm for five-hole pressure probe[J]. International Journal of Engineering,Science and Technology,2011,3(2): 96-10.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  39
  • HTML浏览量:  19
  • PDF量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-17
  • 网络出版日期:  2024-04-01

目录

    /

    返回文章
    返回