留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于QAR数据的航空发动机热力学模型构建方法

马超 赵树杰 徐建新 巴翔

马超, 赵树杰, 徐建新, 等. 基于QAR数据的航空发动机热力学模型构建方法[J]. 航空动力学报, 2023, 38(11):2591-2600 doi: 10.13224/j.cnki.jasp.20220101
引用本文: 马超, 赵树杰, 徐建新, 等. 基于QAR数据的航空发动机热力学模型构建方法[J]. 航空动力学报, 2023, 38(11):2591-2600 doi: 10.13224/j.cnki.jasp.20220101
MA Chao, ZHAO Shujie, XU Jianxin, et al. Construction method of aero-engine thermodynamic model based on QAR data[J]. Journal of Aerospace Power, 2023, 38(11):2591-2600 doi: 10.13224/j.cnki.jasp.20220101
Citation: MA Chao, ZHAO Shujie, XU Jianxin, et al. Construction method of aero-engine thermodynamic model based on QAR data[J]. Journal of Aerospace Power, 2023, 38(11):2591-2600 doi: 10.13224/j.cnki.jasp.20220101

基于QAR数据的航空发动机热力学模型构建方法

doi: 10.13224/j.cnki.jasp.20220101
基金项目: 中央高校基本科研业务费项目(3122019085)
详细信息
    作者简介:

    马超(1985-),男,副教授,博士,主要从事基于数据的民机运行与支持、飞行器空气动力学研究

    通讯作者:

    赵树杰(1996-),男,硕士,主要从事航空发动机故障诊断研究。E-mail:254202828@qq.com

  • 中图分类号: V231.1+1

Construction method of aero-engine thermodynamic model based on QAR data

  • 摘要:

    为了能够建立更加接近真实运行环境的航空发动机热力学模型,提出了一种依据航空发动机运行QAR(quick access recorder)数据的热力学模型构建方法。依据发动机传统设计点热力学方程,利用最小二乘辨识原理,修正25站位压强求解方程,获得干空气热力学模型;根据混合气体熵值的可加性,构建了降雨工况下的湿空气热力学模型;最后结合遗传算法优化的粒子群算法,依据QAR数据进行干空气和湿空气热力学模型参数计算与验证。结果表明该热力学模型计算得到的干空气和湿空气热力学参数与QAR数据间最大误差小于13%,较为接近实际绝热参数。证实了基于QAR数据构建发动机热力学模型的可行性和该热力学模型构建方法求解热力参数的有效性。

     

  • 图 1  涡轮冷却气流流动示意

    Figure 1.  Schematic diagram of the flow of the turbine cooling airflow

    图 2  低压压气机出口总压和高压压气机进口总压

    Figure 2.  Total pressure at the outlet of the low pressure compressor and the total pressure at the inlet of the high pressure compressor

    图 3  ${p_{{{{\text{25}}}}^\prime }}$${p_{{{25}}^{\prime \prime } }}$相关性

    Figure 3.  Correlation between ${p_{{{{\text{25}}}}^\prime }}$ and ${p_{{{25}}^{\prime \prime } }}$

    图 4  同一台发动机不同航班${p_{{{{\text{25}}}}^{\prime \prime } }}$定熵和辨识计算结果对比

    Figure 4.  Comparison of ${p_{{{{\text{25}}}}^{\prime \prime }}}$ constant entropy and identification calculation results of different flight on the same engine

    图 5  PSO-GA算法结构流程图

    Figure 5.  PSO-GA algorithm structure flow chart

    图 6  PSO-GA适应度函数值

    Figure 6.  PSO-GA fitness function value

    图 7  建模流程图

    Figure 7.  Modeling flowchart

    表  1  CFM56-7B发动机站位信息

    Table  1.   CFM56-7B engine station information

    站位序号站位名站位序号站位名
    0发动机远前方12风扇进口
    25′低压压气机出口25″高压压气机进口
    30高压压气机出口40燃烧室出口
    40′高压涡轮进口45高压涡轮出口
    45′低压涡轮进口50低压涡轮出口
    下载: 导出CSV

    表  2  QAR记录热力参数

    Table  2.   QAR records thermal parameters

    参数变量符号
    风扇进口温度/K$ {T_{12}} $
    风扇进口压强/Pa${p_{12} }$
    高压压气机进口温度/K$ {T_{25}} $
    高压压气机出口温度/K$ {T_{30}} $
    高压压气机出口压强/Pa${p_{30} }$
    燃油流量/($ {\text{kg}}/{\text{s}} $)$q_{m,{\rm{f}}}$
    尾喷口温度/K$ {T_{50}} $
    下载: 导出CSV

    表  3  辨识方程系数

    Table  3.   Identification equation coefficients

    模型阶数${p_{ {{{\text{25} } } }^{\prime \prime }}}$系数${p_{ {{{\text{25} } } }^\prime}}$系数
    $ k - 1 $ 2.86280.4244     
    $ k - 2 $−4.5039−0.5258     
    $ k - 3 $ 5.15700.1169     
    $ k - 4 $−4.45390
    $ k - 5 $ 2.94980
    $ k - 6 $−1.39130
    $ k - 7 $ 0.35570
    下载: 导出CSV

    表  4  数据截取条件

    Table  4.   Data interception conditions

    参数名称截取条件
    相对转速/%>90
    燃油流量/$ ({\text{kg} }/{\text{s} } ) $>0.252
    空地状态AIR
    油门杆角度/(°)>70
    油门杆角度稳定时间/s>10
    高度/m<1500
    下载: 导出CSV

    表  5  热力参数计算结果与QAR数据对比

    Table  5.   Comparison of thermal parameter calculation results with QAR data

    时刻热力
    参数
    PSO-GA
    计算数据
    QAR记录
    原始数据
    相对
    误差/%
    1T25/K387.58398.7682.81
    T30/K767.90811.225.34
    p30/Pa1964952224777012.58
    2T25/K384.47397.903.38
    T30/K758.58813.046.70
    p30/Pa1985821.06223398011.11
    3T25/K404.98392.783.01
    T30/K741.20809.058.39
    p30/Pa1862370209608011.15
    下载: 导出CSV

    表  6  燃烧室及涡轮部件计算参数

    Table  6.   Calculation parameters of combustor and turbine components

    时刻热力参数PSO-GA计算数据
    1T40/K1709.21
    ${T_{{{40} }^\prime}}$/K1661.44
    p50/Pa73648.43
    ${q_{m,\text{a} } }$/$ (\text{kg}/{\text{s} }) $28.18
    f0.0330
    2T40/K1686.67
    ${T_{{{40} }^\prime }}$/K1639.69
    p50/Pa65817.25
    ${q_{m,\text{a} } }$/$ (\text{kg}/{\text{s} }) $58.73
    f0.0247
    3T40/K1752.18
    ${T_{{{40} }^\prime}}$/K1701.83
    p50/Pa60030.30
    ${q_{m,\text{a} } }$/$ (\text{kg}/{\text{s} }) $50.82
    f0.0581
    下载: 导出CSV

    表  7  湿空气热力学模型热力参数计算结果与QAR数据对比

    Table  7.   Comparing the calculation results of thermodynamic parameters of wet air thermodynamic model with QAR data

    时刻热力
    参数/K
    PSO-GA
    计算数据
    QAR记录
    原始数据
    相对
    误差/%
    1T25387379.362.01
    T30757773.512.13
    2T25374374.140.03
    T30774767.150.89
    3T25366387.205.47
    T30749803.146.74
    下载: 导出CSV

    表  8  湿空气热力学模型燃烧室及涡轮部件计算参数

    Table  8.   Calculation parameters of combustor and turbine components of wet air thermodynamic model

    时刻热力参数PSO-GA计算数据
    1${D_{ { {25} }^{\prime \prime } } }/ ({\text{kg} }/{\text{kg} } ) $0.0262
    ${\varphi _{{{25} }^{\prime \prime }}}$/%0.3263
    D30/$ (\text{kg}/{\text{kg} }) $0.3762
    $ {\varphi _{30}} $/%0.0011
    ${p_{ {{{\text{25} } } }^{\prime \prime }}}$/Pa146895
    T40/K1667
    ${T_{{{40} }^\prime }}$/K1616
    P50/Pa68116
    ${q_{ {m,\text{wet} } } }/ (\text{kg}/{\text{s} }) $36
    f0.0206
    2${D_{{{25} }^{\prime \prime }}}$/$ (\text{kg}/{\text{kg} }) $0.0472
    ${\varphi _{{{25} }^{\prime \prime }}}$/%0.5363
    D30/$ (\text{kg}/{\text{kg} }) $0.1044
    $ {\varphi _{30}} $/%0.1086
    ${p_{ {{{\text{25} } } }^{\prime \prime } }}$/Pa164219
    T40/K1548
    ${T_{{{40} }^\prime }}$/K1502
    p50/Pa74369
    ${q_{ {m,\text{wet} } } }/ (\text{kg}/{\text{s} }) $39
    f0.0321
    3${D_{{{25} }^{\prime \prime } }}$/$ (\text{kg}/{\text{kg} }) $0.0028
    ${\varphi _{{{25} }^{\prime \prime } }}$/%0.5460
    D30/$ (\text{kg}/{\text{kg} }) $0.0287
    $ {\varphi _{30}} $/%0.1590
    ${p_{ { { {\text{25} } } }^{\prime \prime } } }$/Pa144000
    T40/K1601
    ${T_{{{40} }^\prime}}$/K1557
    p50/Pa64222
    ${q_{ {m,\text{wet} } } }$/$ (\text{kg}/{\text{s} }) $34
    f0.0315
    下载: 导出CSV
  • [1] 马宇晨. 涡扇发动机吞雨对压气机的影响研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    MA Yuchen. Turbofan engine compressor performance under water ingestion conditions[D]. Harbin: Harbin Engineering University, 2018. (in Chinese)
    [2] 于龙江,朴英. 一种简化算法的航空发动机全状态数学模型[J]. 航空动力学报,2008,23(3): 510-515. doi: 10.13224/j.cnki.jasp.2008.03.013

    YU Longjiang,PIAO Ying. Full range modeling of aero engine systems based on a simplified algorithm[J]. Journal of Aerospace Power,2008,23(3): 510-515. (in Chinese) doi: 10.13224/j.cnki.jasp.2008.03.013
    [3] KOCER G. Aerothermodynamic modeling and simulation of gas turbines for transient operating conditions[D]. Ankara, Türkiye: Middle East Technical University, 2008.
    [4] 郑斐华. 基于系统辨识的航空发动机建模研究[D]. 北京: 中国科学院大学, 2018.

    ZHENG Feihua. Aeroengine modeling research based on system identification[D]. Beijing: University of Chinese Academy of Sciences, 2018. (in Chinese)
    [5] KOPASKIS G, CONNOLLY J W, PAXSON D E, et al. Volume dynamics propulsion system modeling for supersonics vehicle research[J]. Journal of Turbomachinery, 2010, 132(4): 041003.1-041003.8.
    [6] 李家兴. 涡扇发动机性能参数模拟及仿真系统研究[D]. 天津: 中国民航大学, 2016.

    LI Jiaxing. Calculation of performance parameters of the turbofan engine and research for simulation system[D]. Tianjin: Civil Aviation University of China, 2016. (in Chinese)
    [7] 刘乃彬. 发动机故障状态下的性能参数规律研究[D]. 天津: 中国民航大学, 2018.

    LIU Naibin. Research on performance parameters law of aircraft engine in fault sate[D]. Tianjin: Civil Aviation University of China, 2018. (in Chinese)
    [8] TASDELEN V, HERTEL J, FIOLA R, et al. A numerical investigation on ingested water separation in modern turbofan engines[M]. Cologne: DLR, 2014.
    [9] 刘向坤. 压气机吞雨性能及叶片水膜研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.

    LIU Xiangkun. The numerical investigation on the form of blade water film and the performance of rain ingestion process of acompressor[D]. Harbin: Harbin Engineering University, 2016. (in Chinese)
    [10] 倪明. 来流含水条件下两级对置式离心压气机性能研究[D]. 北京: 中国科学院大学, 2019.

    NI Ming. Performance of an opposed-setting-two-stage centrifugal compressor under water-laden conditions[D]. Beijing: University of Chinese Academy of Sciences, 2019. (in Chinese)
    [11] 刘雨兴. 航空发动机闭环控制系统辨识方法研究[D]. 天津: 中国民航大学, 2020.

    LIU Yuxing. Research on identification method of aeroengine closed-loop control system[D]. Tianjin: Civil Aviation University of China, 2020. (in Chinese)
    [12] 尹大伟. 航空发动机模型求解算法及性能寻优控制中的参数估计研究[D]. 长沙: 国防科技大学, 2011.

    YIN Dawei. Algorithms for solving aeroengine nonlinear mathematical model and parameter estimation in performance-seeking control[D]. Changsha: National University of Defense Technology, 2011. (in Chinese)
    [13] SANTA I. The effect of water ingestion on the operation of the gas turbine engine[C]//22nd International Congress of Aeronautical Sciences. Harrogate, UK: Harrogate International Conference Center, 2000.
    [14] NIKOLAIDIS T. Water ingestion effects on gas turbine engine performance[D]. Bedfordshire, UK: Cranfield University, 2008.
    [15] 王春晓,邓潇. 民用大涵道比涡扇发动机吸雨能力评估的方法研究[J]. 民用飞机设计与研究,2013(增刊2): 1-3, 50. doi: 10.3969/j.issn.1674-9804.2013.z2.001

    WANG Chunxiao,DENG Xiao. A method for estimating rain ingestion effect on high bypass ratio turbofan engine performance[J]. Civil Aircraft Design & Research,2013(Suppl.2): 1-3, 50. (in Chinese) doi: 10.3969/j.issn.1674-9804.2013.z2.001
    [16] SZABO I, TURNER M G. An entropy based evaluation of efficiency of a transonic compressor rotor with water injection[C]//Proceedings of the ASME Turbo Expo: Power for Land, Sea, and Air. Berlin: American Society of Mechanical Engineers, 2008: 167-180.
    [17] ZAWADZKI N, SZYMANSKI A, BLOCK N D A, et al. Entropy generation and efficiency of a transonic rotor with water injection: a numerical study[R]. ASME Paper GT2020-15055, 2020.
    [18] SHAO Y, ZHENG Q. The entropy and exergy analyses of wet compression gas turbine[C]//Proceedings of the ASME Turbo Expo: Power for Land, Sea, and Air. Nevada: Society of Mechanical Engineers, 2005: 161-168.
    [19] ZHENG Q,SUN Y,LI S,et al. Thermodynamic analyses of wet compression process in the compressor of gas turbine[J]. Journal of Turbomachinery,2003,125(3): 489-496. doi: 10.1115/1.1575254
    [20] 邵燕. 湿压缩燃气轮机气动热力学研究[D]. 哈尔滨: 哈尔滨工程大学, 2006.

    SHAO Yan. Thermodynamic research and numerical simulation of the wet compression compressor[D]. Harbin: Harbin Engineering University, 2006. (in Chinese)
    [21] 吴文彭,胡胜波,王欢乐,等. 空气湿度对压气机性能的影响[J]. 东方汽轮机,2017(2): 4-7, 12. doi: 10.13808/j.cnki.issn1674-9987.2017.02.002

    WU Wenpeng,HU Shengbo,WANG Huanle,et al. Effect of air humidity on compressor performance[J]. Dongfang Turbine,2017(2): 4-7, 12. (in Chinese) doi: 10.13808/j.cnki.issn1674-9987.2017.02.002
    [22] 倪明,耿少娟,张小玉,等. 空气湿度对舰用燃气轮机两级对置式离心压气机性能的影响[J]. 舰船科学技术,2020,42(19): 110-117. doi: 10.3404/j.issn.1672-7649.2020.10.022

    NI Ming,GENG Shaojuan,ZHANG Xiaoyu,et al. Humidity effects on the performance of an opposed-setting-two-stage centrifugal compressor for marine gas turbine[J]. Ship Science and Technology,2020,42(19): 110-117. (in Chinese) doi: 10.3404/j.issn.1672-7649.2020.10.022
  • 加载中
图(7) / 表(8)
计量
  • 文章访问数:  209
  • HTML浏览量:  76
  • PDF量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-03
  • 网络出版日期:  2023-04-11

目录

    /

    返回文章
    返回