Aero-engine stall/surge airworthiness certification under combined pressure-temperature distortion
-
摘要:
压力-温度组合畸变由于其复杂的非线性作用机制,对稳定性审定工作造成了极大的挑战。通过对某单级轴流压气机进行数值模拟,探究了不同组合畸变强度和组合相位角下压力-温度组合畸变对压气机稳定性的影响。结果表明:相位角越小稳定裕度损失越大,0°相位角时喘振裕度损失最大;改变总压畸变强度影响了气动测量截面相对马赫数分布和进气攻角,总压畸变强度增大导致前缘溢流推迟,所以不同总压畸变强度下失稳点流量差异较小。最终结合相关条款的要求,建立了压力-温度组合畸变下航空发动机失速/喘振的符合性验证流程。
Abstract:Due to its complex nonlinear mechanism, the combined distortion of pressure and temperature poses great challenges to the stability evaluation. Through numerical simulation of a single stage axial compressor, the influence of the combined pressure-temperature distortion on the stability of the compressor under different combined distortion intensities and combined phase angles was investigated. The results show that the smaller the phase angle is, the greater the loss of stability margin is, and the maximum loss of surge margin is at 0° phase angle. Changing the total pressure distortion intensity affects the relative Mach number distribution of the aerodynamic measurement section and the inlet angle of attack. The increase of the total pressure distortion intensity leads to the delay of the leading edge overflow, so the flow difference at the instability point is small under different total pressure distortion intensities. Finally, according to the requirements of relevant clauses, the verification process of aeroengine stall/surge compliance under the combined distortion of pressure and temperature is established.
-
表 1 总压畸变参数表
Table 1. Total pressure distortion parameter table
$ {D_{{p^*}}} $/% $ A $/(°) $p_{{\rm{ud}}}^*/{\rm{Pa}}$ $p_{\rm{d}}^*/{\rm{Pa}}$ 5 180 101325 96258.75 10 180 101325 91192.50 15 180 101325 86126.25 表 2 总温畸变参数表
Table 2. Total temperature distortion parameter table
$ {D_{{T^*}}} $/% $ A $/(°) $ T_{{\rm{ud}}}^*/{\rm{K}} $ $ T_{\rm{d}}^* /{\rm{K}}$ 5 180 288.15 302.5575 10 180 288.15 316.9650 15 180 288.15 331.3730 表 3 六种进气工况下压气机归一化压比和效率值及其相对减小量
Table 3. Normalized pressure ratio and efficiency values of compressor and their relative reduction under six inlet conditions
工况 归一
压比压比相对
减小/%效率/% 效率相对
减小/%均匀进气 0.978 0 85.927 0 总压畸变 0.949 2.965 84.692 1.437 总温畸变 0.972 0.613 85.915 0.014 0°相位角 0.943 3.579 84.296 1.898 90°相位角 0.948 3.067 84.464 1.703 180°相位角 0.955 2.351 85.050 1.021 表 4 组合畸变不同总压畸变强度下压气机归一化压比和效率值及其相对减小量
Table 4. Normalized compressor pressure ratio and efficiency values and their relative decreases with different total pressure distortion intensities under combined distortion
工况 归一
压比压比相对
减小/%效率/% 效率相对
减小/%均匀进气 0.978 0 85.927 0 Case 1 0.969 0.920 85.483 0.517 Case 2 0.948 3.067 84.464 1.703 Case 3 0.916 6.339 82.710 3.744 表 5 Blade 5吸力面激波位置和发生前缘溢流的叶尖泄漏流末尾位置
Table 5. Blade 5 suction side shock position and tip leakage end position where leading edge overflow occurs
工况 激波相对
弦长位置叶尖泄漏流末尾
相对弦长位置均匀进气 0.978 0 Case 1 0.969 0.920 Case 2 0.948 3.067 Case 3 0.916 6.339 表 6 组合畸变不同总温畸变强度下压气机归一化压比和效率值及其相对减小量
Table 6. Normalized pressure ratio and efficiency values of compressor under different total temperature distortion intensities of combined distortion and their relative reductions
工况 归一
压比压比相对
减小/%效率/% 效率相对
减小/%均匀进气 0.978 0 85.927 0 Case 2 0.948 3.067 84.464 1.703 Case 4 0.933 4.601 84.362 1.821 Case 5 0.919 6.033 84.187 2.025 表 7 压力-温度组合畸变下不同畸变强度组合形式
Table 7. Various distortion intensity combinations of combined pressure-temperature distortion
编号 进气畸变工况 A ${\rm{Case} \;1}:{D_{ {p^*} } } = 5{\text{%} } , {D_{ {T^*} } } = 5{\text{%} }$ B ${\rm{Case}\;2 }:{D_{ {p^*} } } = 10{\text{%} } , {D_{ {T^*} } } = 5{\text{%} }$ C ${\rm{Case} \;3}:{D_{ {p^*} } } = 15{\text{%} } , {D_{ {T^*} } } = 5{\text{%} }$ D ${\rm{ Case}\;4 }:{D_{ {p^*} } } = 10{\text{%} } , {D_{ {T^*} } } = 10{\text{%} }$ E ${\rm{Case}\;5 }:{D_{ {p^*} } } = 10{\text{%} } , {D_{ {T^*} } } = 15{\text{%} }$ -
[1] CHESHIRE L J. The design and development of centrifugal compressors for aircraft gas turbines[J]. Proceedings of the Institution of Mechanical Engineers,1945,153(1): 426-440. doi: 10.1243/PIME_PROC_1945_153_048_02 [2] 胡骏. 航空发动机气动稳定性分析方法[M] . 北京: 国防工业出版社, 2015 [3] 魏兵海,吴克启. 风机失速喘振特性及其预防措施[J]. 流体机械,2001,29(6): 28-31. doi: 10.3969/j.issn.1005-0329.2001.06.008WEI Binghai,WU Keqi. Characteristics of stall surge of fan and its preventive measures[J]. Fluid Machinery,2001,29(6): 28-31. (in Chinese) doi: 10.3969/j.issn.1005-0329.2001.06.008 [4] 夏联, 顾杨, 崔健, 等. 多级轴流压气机不同工况下失速/喘振试验研究[J] . 燃气涡轮试验与研究, 2001, 14(3): 16-23XIA Lian, GU Yang, CUI Jian, et al. An experimental investigation of stall/surge of a multistage axial compressor in different conditions[J]. Gas Turbine Experiment and Research, 2001, 14(3): 16-23. (in Chinese) [5] 中国民用航空局. 航空发动机适航规定: CCAR33-R2[S] . 北京: 中国民用航空局, 2011: 31. [6] 中国民用航空局. 《航空发动机审定》咨询通告草案: AC-33-AA-2021[S]. 北京: 中国民用航空局, 2021. [7] 刘大响, 侯敏杰, 叶巍.航空涡轮发动机稳定性设计与评定指南: GJB/Z 224-2005[S]北京: 国家科学技术工业委员会, 2005: 1-42 [8] LEINHOS D C,SCHMID N R,FOTTNER L. The influence of transient inlet distortions on the instability inception of a low-pressure compressor in a turbofan engine[J]. Journal of Turbomachinery,2001,123(1): 5-8. [9] GUNN E J,TOOZE S E,HALL C A,et al. An experimental study of loss sources in a fan operating with continuous inlet stagnation pressure distortion[J]. Journal of Turbomachinery,2013,135(5): 051002.1-051002.6. [10] 付文军, 屠宝锋, 胡骏, 等. 蒸汽吸入对压气机气动稳定性影响试验和数值研究[J] . 航空动力学报, 2020, 35(1) : 205-214FU Wenjun, TU Baofeng, HU Jun, et al. Experimental and numerical investigation on aerodynamic stability of steaming estion in a compressor[J]. Journal of Aerospace Power, 2020, 35(1): 205-214. (in Chinese) [11] 陈智洋,吴艳辉,安近怀远,等. 雷诺数对轴流压气机转子非定常流动的影响[J]. 航空动力学报,2019,34(12): 2706-2718. doi: 10.13224/j.cnki.jasp.2019.12.020CHEN Zhiyang,WU Yanhui,AN Jinhuaiyuan,et al. Influence of Reynolds number on unsteady flow of axial compressor rotor[J]. Journal of Aerospace Power,2019,34(12): 2706-2718. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.12.020 [12] 綦蕾, 李志平, 杨东, 等. 航空发动机适航审定喘振与失速影响因素[J]. 航空动力学报, 2020, 35(8): 1724-1734.QI Lei, LI Zhiping, YANG Dong, et al. Destabilizing factors on surge and stall characteristic in aero-engine airworthiness certification[J]. Journal of Aerospace Power, 2020, 35(8): 1724-1734. (in Chinese) [13] 谢业平, 刘永泉, 潘宝军. 真实进气条件下发动机气动稳定性计算方法[J] . 航空动力学报, 2019, 34(4) : 804-812.XIE Yeping, LIU Yongquan, PAN Baojun.Aerodynamic calculation method of engine stability under actual inlet condition[J]. Journal of Aerospace Power, 2019, 34(4) : 804-812. (in Chinese) [14] 张曙光. 适航性: 航空器合格审定引论[M] . 北京: 北京航空航天大学出版社, 2011 [15] SOEDER R H, MEHALIC C M. Effect of combined pressure and temperature distortion orientation on high-bypass-ratio turbofan engine stability[R]. NASA TM-83771, 1984 [16] BRAITHWAITE W, GRABER E, MEHALIC C, et al. The effect of inlet temperature and pressure distortion on turbojet performance[R]. AIAA 1973-1316, 1973. [17] 董金钟, 王苗苗. 总压总温组合畸变对压气机稳定性影响的数值模拟研究[J] . 航空动力学报, 2003, 18(6) : 788-793.DONG Jinzhong, WANG Miaomiao. Effect on stability of compressor with total temperature and pressure distortions[J]. Journal of Aerospace Power, 2003, 18(6) : 788-793. (in Chinese) [18] 黄顺洲,胡骏. 组合畸变对某型发动机稳定性的影响[J]. 航空动力学报,2006,21(6): 1085-1091. doi: 10.3969/j.issn.1000-8055.2006.06.024HUANG Shunzhou,HU Jun. Investigation of the effect of combined distortion on engine stability[J]. Journal of Aerospace Power,2006,21(6): 1085-1091. (in Chinese) doi: 10.3969/j.issn.1000-8055.2006.06.024 [19] SAE. Statistical stability assessment: AIR-5656A[S]. Warrendale,USA: SAE, 2016: 1-73.