留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压力-温度组合畸变下航空发动机失速/喘振适航审定

李志平 陈家辉 朱星宇 赵雨洁

李志平, 陈家辉, 朱星宇, 等. 压力-温度组合畸变下航空发动机失速/喘振适航审定[J]. 航空动力学报, 2023, 38(12):3050-3062 doi: 10.13224/j.cnki.jasp.20220107
引用本文: 李志平, 陈家辉, 朱星宇, 等. 压力-温度组合畸变下航空发动机失速/喘振适航审定[J]. 航空动力学报, 2023, 38(12):3050-3062 doi: 10.13224/j.cnki.jasp.20220107
LI Zhiping, CHEN Jiahui, ZHU Xingyu, et al. Aero-engine stall/surge airworthiness certification under combined pressure-temperature distortion[J]. Journal of Aerospace Power, 2023, 38(12):3050-3062 doi: 10.13224/j.cnki.jasp.20220107
Citation: LI Zhiping, CHEN Jiahui, ZHU Xingyu, et al. Aero-engine stall/surge airworthiness certification under combined pressure-temperature distortion[J]. Journal of Aerospace Power, 2023, 38(12):3050-3062 doi: 10.13224/j.cnki.jasp.20220107

压力-温度组合畸变下航空发动机失速/喘振适航审定

doi: 10.13224/j.cnki.jasp.20220107
基金项目: 国家科技重大专项(2017-Ⅱ-0004-0016)
详细信息
    作者简介:

    李志平(1975-),男,副教授、博士生导师,博士,主要从事叶轮机非定常流动机理、民用发动机失速/喘振适航审定方法与审定指南研究和新概念分布式动力相关研究。E-mail:leezip@buaa.edu.cn

    通讯作者:

    赵雨洁(1997-),女,博士生,主要从事民用发动机失速/喘振适航审定方法与审定指南研究。E-mail:zoezhao2132@buaa.edu.cn

  • 中图分类号: V231.3

Aero-engine stall/surge airworthiness certification under combined pressure-temperature distortion

  • 摘要:

    压力-温度组合畸变由于其复杂的非线性作用机制,对稳定性审定工作造成了极大的挑战。通过对某单级轴流压气机进行数值模拟,探究了不同组合畸变强度和组合相位角下压力-温度组合畸变对压气机稳定性的影响。结果表明:相位角越小稳定裕度损失越大,0°相位角时喘振裕度损失最大;改变总压畸变强度影响了气动测量截面相对马赫数分布和进气攻角,总压畸变强度增大导致前缘溢流推迟,所以不同总压畸变强度下失稳点流量差异较小。最终结合相关条款的要求,建立了压力-温度组合畸变下航空发动机失速/喘振的符合性验证流程。

     

  • 图 1  单通道计算网格示意图

    Figure 1.  Schematic diagram of single passage grid

    图 2  不同网格数量对压气机性能的影响

    Figure 2.  Influence of different grid numbers on compressor performance

    图 3  全通道网格计算示意图

    Figure 3.  Schematic diagram of full-channel grid computing

    图 4  压力-温度组合畸变示意图

    Figure 4.  Diagram of combined pressure-temperature distortion

    图 5  不同组合畸变相位角下压气机压比特性曲线

    Figure 5.  Compressor pressure ratio characteristic curves at different combination distortion phase angles

    图 6  不同组合畸变相位角下压气机效率特性曲线

    Figure 6.  Compressor efficiency characteristic curves at different combination distortion phase angles

    图 7  0°相位角下压气机近失速点相对马赫数周向分布云图

    Figure 7.  Circumferential distribution cloud diagram of relative Mach number of compressor near stall point at 0° phase angle

    图 8  90°相位角下压气机近失速点相对马赫数周向分布云图

    Figure 8.  Circumferential distribution cloud diagram of relative Mach number of compressor near stall point at 90° phase angle

    图 9  不同相位角压气机近失速点转子99%叶高位置二维流线图

    Figure 9.  Two-dimensional streamline diagram of 99% blade height of rotor near stall point of compressor at different phase angles

    图 10  不同相位角近失速点压气机AIP截面总压分布云图

    Figure 10.  Total pressure distribution cloud diagram of compressor AIP section near stall point at different phase angles

    图 11  不同相位角转子吸力面静压分布和表面极限流线图

    Figure 11.  Static pressure distribution and surface limit streamline diagram on rotor suction surface at different phase angles

    图 12  压气机转子叶片98%叶高位置表面静压系数

    Figure 12.  Surface static pressure coefficient at 98% blade height of compressor rotor blade

    图 13  压气机转子98%叶高位置Blade 10相对马赫数周向分布和叶尖泄漏流流线图

    Figure 13.  Circumferential distribution of relative Mach number at 98% blade height and tip leakage flow diagram of Blade 10 in compressor rotor

    图 14  不同相位角近失速点压气机AIP截面总温分布云图

    Figure 14.  Total temperature distribution cloud diagram of compressor AIP section near stall point at different phase angles

    图 15  不同相位角下Blade 8在98%叶高位置表面静压系数

    Figure 15.  Surface static pressure coefficient of Blade 8 at 98% blade height at different phase angles

    图 16  不同相位角下压气机近失速点转子叶尖泄漏流流线图

    Figure 16.  Streamline diagram of rotor tip leakage at different phase angles of compressor near stall point

    图 17  组合畸变下不同总压畸变强度压气机压比特性曲线

    Figure 17.  Compressor pressure ratio characteristic curves of different total pressure distortion intensities of combined distortion

    图 18  组合畸变下不同总压畸变强度压气机效率特性曲线

    Figure 18.  Compressor efficiency characteristic curves of different total pressure distortion intensities of combined distortion

    图 19  组合畸变不同总压畸变强度下近失速点转子99%叶高二维流线图

    Figure 19.  Two-dimensional streamline diagram at 99% blade height of rotor near stall point under different total pressure distortion intensities of combined distortion

    图 20  组合畸变不同总压畸变强度下近失速点98%叶高相对马赫数分布云图

    Figure 20.  Cloud diagram of relative Mach number distribution at 98% blade height near stall point under different total pressure distortion intensities of combined distortion

    图 21  三种畸变条件下近失速点98%叶高相对马赫数分布和叶尖泄漏流流线图

    Figure 21.  Distribution of relative Mach number at 98% blade height near stall point and streamline diagram of tip leakage under three distortion conditions

    图 22  近失速点组合畸变不同总压畸变强度下Blade 5在98%叶高表面静压系数

    Figure 22.  Surface static pressure coefficient of Blade 5 at 98% blade height near stall point under different total pressure distortion intensities of combined distortion

    图 23  三种进气畸变下Blade 5叶尖泄漏流前缘溢流示意图

    Figure 23.  Schematic diagram of leading edge overflow of Blade 5 tip leakage flow under three intake distortions

    图 24  组合畸变下不同总温畸变强度压气机压比特性曲线

    Figure 24.  Compressor pressure ratio characteristic curves ofdifferent total temperature distortion intensities ofcombined distortion

    图 25  组合畸变下不同总温畸变强度压气机效率特性曲线

    Figure 25.  Compressor efficiency characteristic curves of different total temperature distortion intensities of combined distortion

    图 26  组合畸变不同总温畸变强度下近失速点转子99%叶高二维流线图

    Figure 26.  Two-dimensional streamline diagram of 99% blade height of rotor near stall point under different total temperature distortion intensities of combined distortion

    图 27  组合畸变不同总温畸变强度下近失速点98%叶高相对马赫数分布云图

    Figure 27.  Cloud diagram of relative Mach number distribution at 98% blade height near stall point under different total temperature distortion intensities of combined distortion

    图 28  近失速点98%叶高相对马赫数分布和叶尖泄漏流流线图

    Figure 28.  Distribution of relative Mach number at 98% blade height near the stall point and streamline diagram of tip leakage

    图 29  不同组合相位角下压气机喘振裕度

    Figure 29.  Compressor surge margin under different combined phase angles

    图 30  组合畸变不同畸变强度下压气机喘振裕度

    Figure 30.  Compressor surge margin under different distortion intensities of combined distortion

    图 31  轴流-离心组合发动机失速/喘振特性符合性验证流程

    Figure 31.  Stall/surge characteristics compliance verification process for axial-centrifugal combined engines

    表  1  总压畸变参数表

    Table  1.   Total pressure distortion parameter table

    $ {D_{{p^*}}} $/%$ A $/(°)$p_{{\rm{ud}}}^*/{\rm{Pa}}$$p_{\rm{d}}^*/{\rm{Pa}}$
    518010132596258.75
    1018010132591192.50
    1518010132586126.25
    下载: 导出CSV

    表  2  总温畸变参数表

    Table  2.   Total temperature distortion parameter table

    $ {D_{{T^*}}} $/%$ A $/(°)$ T_{{\rm{ud}}}^*/{\rm{K}} $$ T_{\rm{d}}^* /{\rm{K}}$
    5180288.15302.5575
    10180288.15316.9650
    15180288.15331.3730
    下载: 导出CSV

    表  3  六种进气工况下压气机归一化压比和效率值及其相对减小量

    Table  3.   Normalized pressure ratio and efficiency values of compressor and their relative reduction under six inlet conditions

    工况归一
    压比
    压比相对
    减小/%
    效率/%效率相对
    减小/%
    均匀进气0.978085.9270
    总压畸变0.9492.96584.6921.437
    总温畸变0.9720.61385.9150.014
    0°相位角0.9433.57984.2961.898
    90°相位角0.9483.06784.4641.703
    180°相位角0.9552.35185.0501.021
    下载: 导出CSV

    表  4  组合畸变不同总压畸变强度下压气机归一化压比和效率值及其相对减小量

    Table  4.   Normalized compressor pressure ratio and efficiency values and their relative decreases with different total pressure distortion intensities under combined distortion

    工况归一
    压比
    压比相对
    减小/%
    效率/%效率相对
    减小/%
    均匀进气0.978085.9270
    Case 10.9690.92085.4830.517
    Case 20.9483.06784.4641.703
    Case 30.9166.33982.7103.744
    下载: 导出CSV

    表  5  Blade 5吸力面激波位置和发生前缘溢流的叶尖泄漏流末尾位置

    Table  5.   Blade 5 suction side shock position and tip leakage end position where leading edge overflow occurs

    工况激波相对
    弦长位置
    叶尖泄漏流末尾
    相对弦长位置
    均匀进气0.9780
    Case 10.9690.920
    Case 20.9483.067
    Case 30.9166.339
    下载: 导出CSV

    表  6  组合畸变不同总温畸变强度下压气机归一化压比和效率值及其相对减小量

    Table  6.   Normalized pressure ratio and efficiency values of compressor under different total temperature distortion intensities of combined distortion and their relative reductions

    工况归一
    压比
    压比相对
    减小/%
    效率/%效率相对
    减小/%
    均匀进气0.978085.9270
    Case 20.9483.06784.4641.703
    Case 40.9334.60184.3621.821
    Case 50.9196.03384.1872.025
    下载: 导出CSV

    表  7  压力-温度组合畸变下不同畸变强度组合形式

    Table  7.   Various distortion intensity combinations of combined pressure-temperature distortion

    编号进气畸变工况
    A${\rm{Case} \;1}:{D_{ {p^*} } } = 5{\text{%} } , {D_{ {T^*} } } = 5{\text{%} }$
    B${\rm{Case}\;2 }:{D_{ {p^*} } } = 10{\text{%} } , {D_{ {T^*} } } = 5{\text{%} }$
    C${\rm{Case} \;3}:{D_{ {p^*} } } = 15{\text{%} } , {D_{ {T^*} } } = 5{\text{%} }$
    D${\rm{ Case}\;4 }:{D_{ {p^*} } } = 10{\text{%} } , {D_{ {T^*} } } = 10{\text{%} }$
    E${\rm{Case}\;5 }:{D_{ {p^*} } } = 10{\text{%} } , {D_{ {T^*} } } = 15{\text{%} }$
    下载: 导出CSV
  • [1] CHESHIRE L J. The design and development of centrifugal compressors for aircraft gas turbines[J]. Proceedings of the Institution of Mechanical Engineers,1945,153(1): 426-440. doi: 10.1243/PIME_PROC_1945_153_048_02
    [2] 胡骏. 航空发动机气动稳定性分析方法[M] . 北京: 国防工业出版社, 2015
    [3] 魏兵海,吴克启. 风机失速喘振特性及其预防措施[J]. 流体机械,2001,29(6): 28-31. doi: 10.3969/j.issn.1005-0329.2001.06.008

    WEI Binghai,WU Keqi. Characteristics of stall surge of fan and its preventive measures[J]. Fluid Machinery,2001,29(6): 28-31. (in Chinese) doi: 10.3969/j.issn.1005-0329.2001.06.008
    [4] 夏联, 顾杨, 崔健, 等. 多级轴流压气机不同工况下失速/喘振试验研究[J] . 燃气涡轮试验与研究, 2001, 14(3): 16-23

    XIA Lian, GU Yang, CUI Jian, et al. An experimental investigation of stall/surge of a multistage axial compressor in different conditions[J]. Gas Turbine Experiment and Research, 2001, 14(3): 16-23. (in Chinese)
    [5] 中国民用航空局. 航空发动机适航规定: CCAR33-R2[S] . 北京: 中国民用航空局, 2011: 31.
    [6] 中国民用航空局. 《航空发动机审定》咨询通告草案: AC-33-AA-2021[S]. 北京: 中国民用航空局, 2021.
    [7] 刘大响, 侯敏杰, 叶巍.航空涡轮发动机稳定性设计与评定指南: GJB/Z 224-2005[S]北京: 国家科学技术工业委员会, 2005: 1-42
    [8] LEINHOS D C,SCHMID N R,FOTTNER L. The influence of transient inlet distortions on the instability inception of a low-pressure compressor in a turbofan engine[J]. Journal of Turbomachinery,2001,123(1): 5-8.
    [9] GUNN E J,TOOZE S E,HALL C A,et al. An experimental study of loss sources in a fan operating with continuous inlet stagnation pressure distortion[J]. Journal of Turbomachinery,2013,135(5): 051002.1-051002.6.
    [10] 付文军, 屠宝锋, 胡骏, 等. 蒸汽吸入对压气机气动稳定性影响试验和数值研究[J] . 航空动力学报, 2020, 35(1) : 205-214

    FU Wenjun, TU Baofeng, HU Jun, et al. Experimental and numerical investigation on aerodynamic stability of steaming estion in a compressor[J]. Journal of Aerospace Power, 2020, 35(1): 205-214. (in Chinese)
    [11] 陈智洋,吴艳辉,安近怀远,等. 雷诺数对轴流压气机转子非定常流动的影响[J]. 航空动力学报,2019,34(12): 2706-2718. doi: 10.13224/j.cnki.jasp.2019.12.020

    CHEN Zhiyang,WU Yanhui,AN Jinhuaiyuan,et al. Influence of Reynolds number on unsteady flow of axial compressor rotor[J]. Journal of Aerospace Power,2019,34(12): 2706-2718. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.12.020
    [12] 綦蕾, 李志平, 杨东, 等. 航空发动机适航审定喘振与失速影响因素[J]. 航空动力学报, 2020, 35(8): 1724-1734.

    QI Lei, LI Zhiping, YANG Dong, et al. Destabilizing factors on surge and stall characteristic in aero-engine airworthiness certification[J]. Journal of Aerospace Power, 2020, 35(8): 1724-1734. (in Chinese)
    [13] 谢业平, 刘永泉, 潘宝军. 真实进气条件下发动机气动稳定性计算方法[J] . 航空动力学报, 2019, 34(4) : 804-812.

    XIE Yeping, LIU Yongquan, PAN Baojun.Aerodynamic calculation method of engine stability under actual inlet condition[J]. Journal of Aerospace Power, 2019, 34(4) : 804-812. (in Chinese)
    [14] 张曙光. 适航性: 航空器合格审定引论[M] . 北京: 北京航空航天大学出版社, 2011
    [15] SOEDER R H, MEHALIC C M. Effect of combined pressure and temperature distortion orientation on high-bypass-ratio turbofan engine stability[R]. NASA TM-83771, 1984
    [16] BRAITHWAITE W, GRABER E, MEHALIC C, et al. The effect of inlet temperature and pressure distortion on turbojet performance[R]. AIAA 1973-1316, 1973.
    [17] 董金钟, 王苗苗. 总压总温组合畸变对压气机稳定性影响的数值模拟研究[J] . 航空动力学报, 2003, 18(6) : 788-793.

    DONG Jinzhong, WANG Miaomiao. Effect on stability of compressor with total temperature and pressure distortions[J]. Journal of Aerospace Power, 2003, 18(6) : 788-793. (in Chinese)
    [18] 黄顺洲,胡骏. 组合畸变对某型发动机稳定性的影响[J]. 航空动力学报,2006,21(6): 1085-1091. doi: 10.3969/j.issn.1000-8055.2006.06.024

    HUANG Shunzhou,HU Jun. Investigation of the effect of combined distortion on engine stability[J]. Journal of Aerospace Power,2006,21(6): 1085-1091. (in Chinese) doi: 10.3969/j.issn.1000-8055.2006.06.024
    [19] SAE. Statistical stability assessment: AIR-5656A[S]. Warrendale,USA: SAE, 2016: 1-73.
  • 加载中
图(31) / 表(7)
计量
  • 文章访问数:  213
  • HTML浏览量:  72
  • PDF量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-04
  • 网络出版日期:  2023-04-07

目录

    /

    返回文章
    返回