留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于㶲分析和代偿损失的热管理系统性能评价方法

赵维维 娄德仓 钟世林

赵维维, 娄德仓, 钟世林. 基于㶲分析和代偿损失的热管理系统性能评价方法[J]. 航空动力学报, 2023, 38(12):2829-2836 doi: 10.13224/j.cnki.jasp.20220121
引用本文: 赵维维, 娄德仓, 钟世林. 基于㶲分析和代偿损失的热管理系统性能评价方法[J]. 航空动力学报, 2023, 38(12):2829-2836 doi: 10.13224/j.cnki.jasp.20220121
ZHAO Weiwei, LOU Decang, ZHONG Shilin. Performance evaluation method of thermal management system based on exergy analysis and compensatory loss[J]. Journal of Aerospace Power, 2023, 38(12):2829-2836 doi: 10.13224/j.cnki.jasp.20220121
Citation: ZHAO Weiwei, LOU Decang, ZHONG Shilin. Performance evaluation method of thermal management system based on exergy analysis and compensatory loss[J]. Journal of Aerospace Power, 2023, 38(12):2829-2836 doi: 10.13224/j.cnki.jasp.20220121

基于㶲分析和代偿损失的热管理系统性能评价方法

doi: 10.13224/j.cnki.jasp.20220121
详细信息
    作者简介:

    赵维维(1987-),女,高级工程师,硕士,主要从事航空发动机综合热管理系统研究。E-mail:longmushi@163.com

    通讯作者:

    娄德仓(1979-),男,研究员,硕士,主要从事航空发动机综合热管理系统研究。E-mail:755177126@qq.com

  • 中图分类号: V231.1

Performance evaluation method of thermal management system based on exergy analysis and compensatory loss

  • 摘要:

    针对航空发动机热管理系统方案提出了基于㶲分析和当量质量分析的综合性能评价方法,从热力学性能和起飞总质量增加值两个角度对不同热管理系统方案的性能进行对比分析。根据建立的分析方法对某发动机两个舱内热管理系统方案(直接引气和泵后引气)进行了性能综合评价,结果表明:采用泵后引气热管理系统方案由于实现了功率提取和冷却的综合利用,同时减少了全程引气带来的气动阻力损失,相比直接引气方案,总的㶲效率最高提升12.3%,起飞总质量降低了233.7 kg,因此泵后引气热管理方案的综合性能优于直接引气方案。该方法对其他类似系统方案的性能评估具有参考价值。

     

  • 图 1  发动机飞行马赫数随时间变化

    Figure 1.  Flight Mach number of engine changes with time

    图 2  直接引气方案

    Figure 2.  Scheme of direct air bleed

    图 3  泵后引气方案

    Figure 3.  Scheme of bleed after pump

    图 4  系统㶲效率对比分析

    Figure 4.  Comparative analysis of exergy efficiency of different systems

    表  1  发动机舱内温度控制系统方案

    Table  1.   Schemes of temperature control system in engine compartment

    方案主要形式被动防护形式主动通风冷却形式
    方案一
    (直接引气)
    采用被动隔热与主动
    通风冷却结合
    采用5 mm气凝胶隔热材料
    包覆机匣表面
    全程采用进气道出口引气冷却;引气管路上采用燃油进行冷却,然后对舱内进行冷却
    方案二
    (泵后引气)
    在方案一的基础上,与
    能源系统共用冷却气
    采用5 mm气凝胶隔热材料
    包覆机匣表面
    Ma<2.0,进气道出口引气冷却;Ma>2.0,利用引气切换装置将进气道出口引气改为空气涡轮泵后引气。进气道气流通过空气涡轮泵提取轴功后温度降低,再利用燃油冷却后用于舱内环境冷却
    下载: 导出CSV

    表  2  直接引气方案㶲分析

    Table  2.   Exergy analysis of the directly air bleed scheme

    参数工况代号
    12345
    空气进口㶲/(kW/kg)109.4333.7214.4116.2399.6
    燃油进口㶲/(kW/kg)137.0108.380.568.8158.1
    空气出口㶲/(kW/kg)58.558.628.811.369.6
    燃油出口㶲/(kW/kg)169.9289.0206.7140.6366.7
    㶲损耗/(kW/kg)18.094.559.533.1121.4
    㶲效率0.9270.7860.7980.8210.782
    下载: 导出CSV

    表  3  泵后引气方案系统㶲分析

    Table  3.   Exergy analysis of the programme that bleed after pump

    参数工况代号
    123
    涡轮泵㶲分析涡轮泵进口气流㶲/(kW/kg)236.78891.84572.35
    涡轮泵输出㶲/(kW/kg)167.14397.42249.15
    出口气流㶲/(kW/kg)59.41441.63286.54
    涡轮泵的㶲损失/(kW/kg)10.2352.7936.66
    涡轮泵的㶲效率0.960.940.94
    换热器㶲分析空气进口㶲/(kW/kg)28.34181.26117.96
    燃油进口㶲/(kW/kg)136.99108.3480.50
    空气出口㶲/(kW/kg)23.5741.3522.86
    燃油出口㶲/(kW/kg)141.46207.91150.16
    换热器㶲损耗/(kW/kg)0.3040.3425.44
    换热器㶲效率0.9980.8610.872
    系统㶲分析进口㶲/(kW/kg)373.771000.18652.85
    总㶲损失/(kW/kg)10.5393.1362.10
    系统㶲效率0.9720.9070.905
    下载: 导出CSV

    表  4  泵后引气方案系统㶲分析

    Table  4.   Exergy analysis of the programme that bleed after pump

    参数工况代号
    45
    涡轮泵㶲分析涡轮泵进口气流㶲/(kW/kg)329.241124.83
    涡轮泵输出㶲/(kW/kg)134.77492.23
    出口气流㶲/(kW/kg)169.90565.44
    涡轮泵的㶲损失/(kW/kg)24.5767.16
    涡轮泵的㶲效率0.930.94
    换热器㶲分析空气进口㶲/(kW/kg)66.61221.33
    燃油进口㶲/(kW/kg)68.81158.09
    空气出口㶲/(kW/kg)10.7848.93
    燃油出口㶲/(kW/kg)109.86276.88
    换热器㶲损耗/(kW/kg)14.7753.61
    换热器㶲效率0.890.86
    系统㶲分析进口㶲/(kW/kg)398.041282.92
    总㶲损失/(kW/kg)39.34120.76
    系统㶲效率0.9010.906
    下载: 导出CSV

    表  5  两个热管理系统方案的当量质量

    Table  5.   Equivalent mass of different thermal management system schemes

    参数方案一方案二
    换热器及引气管路质量/kg8080
    换热器质量引起的燃油代偿损失/kg71.671.6
    引气切换装置质量/kg025
    引气切换装置引起的燃油代偿损失/kg022.4
    引气流量/(kg/s)0.7(全程)0.7(Ma<2.0)
    引气量引起的燃油代偿损失/kg294.913.8
    热管理系统导致飞机起飞总质量增加值/kg446.5212.8
    下载: 导出CSV
  • [1] 徐志英,庄达民. 飞机燃油系统热管理研究[J]. 航空动力学报,2007,22(11): 1833-1837.

    XU Zhiying,ZHUANG Damin. Research of heat management for aircraft fuel system[J]. Journal of Aerospace Power,2007,22(11): 1833-1837. (in Chinese)
    [2] EVGENI G, MIKE K. Power and thermal management for future aircraft[R]. SAE 2013-01-2273, 2013.
    [3] CLARENCE L, MATTHEW D, JACQUELYN D. Power & thermal systems integration techniques for high performance jet aircraft[R]. SAE 2012-01-2164, 2012.
    [4] 罗志会,王小平,黄纯洲. 新一代飞机自适应动力与热管理系统研究[J]. 航空科学技术,2012,23(5): 38-41.

    LUO Zhihui,WANG Xiaoping,HUANG Chunzhou. Adaptive power and thermal management system for new generation aircraft[J]. Aeronautical Science & Technology,2012,23(5): 38-41. (in Chinese)
    [5] 黄星. 飞机自适应动力与热管理系统能效分析研究[D]. 南京: 南京航空航天大学, 2018.

    HUANG Xing. The study of energy efficiency of adaptive power and thermal management system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
    [6] 杨天宇,张彦军,芮长胜. 高速涡轮发动机技术发展浅析[J]. 燃气涡轮试验与研究,2013,26(6): 26-30.

    YANG Tianyu,ZHANG Yanjun,RUI Changsheng. High speed turbine engine technology development[J]. Gas Turbine Experiment and Research,2013,26(6): 26-30. (in Chinese)
    [7] 文科,李旭昌,马岑睿,等. 国外高超声速组合推进技术概述[J]. 航天制造技术,2011(1): 4-7,20.

    WEN Ke,LI Xuchang,MA Cenrui,et al. Hypersonic combined-cycle propulsion technology based on scramjet[J]. Aerospace Manufacturing Technology,2011(1): 4-7,20. (in Chinese)
    [8] 尹泽勇,蔚夺魁,徐雪. 高马赫数涡轮基推进系统的发展及挑战[J]. 航空发动机,2021,47(4): 1-7.

    YIN Zeyong,YU Duokui,XU Xue. Development trend and technical challenge of high Mach number turbine based propulsion system[J]. Aeroengine,2021,47(4): 1-7. (in Chinese)
    [9] 高峰,袁修干. 高性能战斗机燃油热管理系统[J]. 北京航空航天大学学报,2009,35(11): 1353-1356.

    GAO Feng,YUAN Xiugan. Fuel thermal management system of high performance fighter aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2009,35(11): 1353-1356. (in Chinese)
    [10] HUANG He,SPADACCINI L. Coke removal in fuel-cooled thermal management systems[J]. Industrial & Engineering Chemistry Research,2001,44: 267-278.
    [11] 于磊,梁兴壮,李国强. 飞机热管理系统动态仿真[J]. 飞机设计,2021,41(3): 9-13.

    YU Lei,LIANG Xingzhuang,LI Guoqiang. Dynamic simulation of aircraft thermal management system[J]. Aircraft Design,2021,41(3): 9-13. (in Chinese)
    [12] BROWN D,SMITH S,SMITH G. Integrated thermal energy management (I-TEM) -an evaluation tool for aircraft[J]. SAE International Journal of Aerospace,1993,102(1): 1911-1921.
    [13] 廖桔, 熊斌, 沈军. 基于航空及临近空间飞行器综合热管理的燃料使用方式初步研究[C]//先进空天动力油料发展. 北京: 航空工业出版社, 2018: 294-299
    [14] 高超声速组合动力装置热防护技术及整机热管理[R]. 贵阳: 中国航空学会第7届动力年会, 2010.
    [15] 付德斌,丁水汀,陶智,等. 一种基于热管理的热端部件轻量化研究[J]. 航空动力学报,2011,26(4): 814-821.

    FU Debin,DING Shuiting,TAO Zhi,et al. Study on heated components mass reduction based on thermal management[J]. Journal of Aerospace Power,2011,26(4): 814-821. (in Chinese)
    [16] 罗志会,李胜全,黄纯洲. 下一代飞机热管理技术的研究热点[J]. 航空科学技术,2015,26(8): 6-12. doi: 10.3969/j.issn.1007-5453.2015.08.002

    LUO Zhihui,LI Shengquan,HUANG Chunzhou. Highlights of next generation aircraft thermal management technology[J]. Aeronautical Science & Technology,2015,26(8): 6-12. (in Chinese) doi: 10.3969/j.issn.1007-5453.2015.08.002
    [17] 何慧姗,宣小平. 低性能代偿损失的环境控制系统方案研究[J]. 航空学报,1999,20(增刊 1): 5-7.

    HE Huishan,XUAN Xiaoping. Concept study on environmental control systems with less fuel penalties[J]. Acta Aeronautica et Astronautica Sinica,1999,20(Suppl. 1): 5-7. (in Chinese)
    [18] 冯青, 李世武, 张丽. 工程热力学[M]. 西安: 西北工业大学出版社, 2006.
    [19] 寿荣中, 何慧姗. 飞行器环境控制[M]. 北京: 北京航空航天大学出版社, 2004.
    [20] 卢沛,罗向龙,陈健勇,等. 板式换热器及其热力系统的运行特性和高级㶲分析[J]. 化工学报,2021,72(增刊 1): 512-519.

    LU Pei,LUO Xianglong,CHEN Jianyong,et al. Operating characteristics and advanced exergy analysis of plate heat exchangers and their thermal system[J]. CIESC Journal,2021,72(Suppl. 1): 512-519. (in Chinese)
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  169
  • HTML浏览量:  59
  • PDF量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-09
  • 网络出版日期:  2023-08-16

目录

    /

    返回文章
    返回