Optimization of cooling performance of X-type truss array channel based on response surface methodology
-
摘要:
基于数值结果构建了有关X型桁架通道壁面平均努塞尔数、摩擦因数和综合热力系数的2阶响应面模型,分析了桁架杆直径比、桁架杆夹角和桁架杆倾角等对X型桁架通道冷却性能的影响规律,并优化得到了最佳参数。结果表明:增大桁架杆直径比和桁架杆夹角均可以快速地提高平均努塞尔数,但也相应地增大了摩擦因数;增大桁架杆倾角先提高后又降低了平均努塞尔数和摩擦因数;增大桁架杆直径比、桁架杆夹角和桁架杆倾角均会使综合热力系数先增大后减小。当桁架杆直径比为0.0750、桁架杆夹角为60°和桁架杆倾角为33.79°时通道的传热性能最优;当桁架杆直径比为0.067、桁架杆夹角为37.88°和桁架杆倾角为31.36°时通道的综合热力性能最优。
Abstract:Based on the numerical results, the second-order response surface models with high prediction accuracy for the wall average Nusselt number, friction coefficient and comprehensive thermal coefficient of X-type truss channel were built. The influence laws of truss rod diameter ratio, truss rod included angle and truss rod inclination angle on the cooling performance of X-type truss array channel were analyzed, and the optimal parameters were obtained by optimization. The results showed that increasing truss rod diameter ratio and truss rod’s included angle both can greatly improve average Nusselt number, but also increased the friction coefficient accordingly. Enlarging truss rod’s inclination angle first increased and then decreased the average Nusselt number and friction coefficient. Increasing truss rod diameter ratio, truss rod’s included angle and truss rod’s inclination angle made the comprehensive thermal coefficient first increase and then decrease. When truss rod diameter ratio was 0.0750, truss rod’s included angle was 60° and truss rod’s inclination angle was 33.79°, the heat transfer performance of the channel reached the best. When truss rod diameter ratio was 0.067, truss rod’s included angle was 37.88° and truss rod’s inclination angle was 31.36°, the comprehensive thermal performance of the channel was the best.
-
表 1 设计变量及其水平
Table 1. Design variables and their levels
变量 水平 低 中 高 d/D 0.0375 0.0563 0.0750 α/(°) 30 45 60 β/(°) 15 30 45 表 2 CCF试验设计
Table 2. CCF experimental design
序号 输入参数 输出参数 序号 输入参数 输出参数 d/D α/(°) β/(°) Nua f F d/D α/(°) β/(°) Nua f F 1 0.0375 45 30 100.678 0.038 0.619 11 0.0750 30 15 114.529 0.060 0.606 2 0.0563 45 30 120.464 0.054 0.660 12 0.0750 60 45 134.040 0.103 0.592 3 0.0375 30 45 94.262 0.038 0.582 13 0.0750 60 15 129.925 0.084 0.615 4 0.0563 45 15 111.956 0.048 0.637 14 0.0750 45 30 138.637 0.075 0.680 5 0.0563 45 30 120.464 0.054 0.660 15 0.0563 30 30 114.142 0.047 0.653 6 0.0563 60 30 124.294 0.061 0.655 16 0.0563 45 30 120.464 0.054 0.660 7 0.0750 30 45 129.400 0.070 0.651 17 0.0375 60 45 97.120 0.048 0.554 8 0.0563 45 30 120.464 0.054 0.660 18 0.0563 45 30 120.464 0.054 0.660 9 0.0563 45 45 114.864 0.053 0.633 19 0.0375 30 15 98.238 0.035 0.620 10 0.0375 60 15 103.233 0.042 0.616 20 0.0563 45 30 120.464 0.054 0.660 表 3 Nua、f和F模型的回归系数
Table 3. Regression coefficients for models of Nua,f and F
回归系数 Nua f F b0 49.7 0.0956 −0.014 b1 299 −1.706 9.68 b2 0.483 −0.001613 0.02546 b3 1.435 −0.000278 0.00577 b11 −1016 14.54 −83.7 b22 −0.00354 0.000011 −0.00025 b33 −0.02935 −0.000005 0.000015 b12 5.41 0.01809 −0.0169 b13 12.92 0.00925 −0.0577 b23 − 0.00716 0.000007 0.000008 -
[1] 席雷,高建民,徐亮,等. 涡轮叶片前缘阵列冲击冷却流动及传热特性数值研究[J]. 工程热物理学报,2021,42(2): 430-437.XI Lei,GAO Jianmin,XU Liang,et al. Numerical study on flow and heat transfer characteristics of jet array impingement cooling in turbine blade leading edge[J]. Journal of Engineering Thermophysics,2021,42(2): 430-437. (in Chinese) [2] 李拓. 点阵多孔金属夹芯板振动特性分析及优化分析[D]. 西安 : 西安交通大学, 2008.LI Tuo. Research on vibration characteristics and optimization of truss-cored metal sandwich plate[D]. Xi’an: Xi’an Jiaotong University, 2008. (in Chinese) [3] 吴林志,殷莎,马力. 复合材料点阵夹芯结构的耦合换热及热应力分析[J]. 功能材料,2010,41(6): 969-972.WU Linzhi,YIN Sha,MA Li. Coupled heat transfer and thermal stress analysis of composite lattice core sandwich structure[J]. Journal of Functional Materials,2010,41(6): 969-972. (in Chinese) [4] SCHAEDLER T A,JACOBSEN A J,TORRENTS A,et al. Ultralight metallic microlattices[J]. Science,2011,334(6058): 962-965. doi: 10.1126/science.1211649 [5] ZHANG Qian,JIANG Wenchun,ZHAO Bing,et al. A study of the effective elastic modulus of a lattice truss panel structure by experimental and theoretical analysis[J]. Composite Structures,2017,165: 130-137. doi: 10.1016/j.compstruct.2017.01.012 [6] 易长炎. 基于SLM的应力匹配变密度轻质金属点阵结构设计及力学性能研究[D]. 重庆: 重庆大学, 2019.YI Changyan. Design of stress-matched variable density light metal lattice structure based on SLM and study on its mechanical properties[D]. Chongqing: Chongqing University, 2019. (in Chinese) [7] MALONEY K J,FINK K D,SCHAEDLER T A,et al. Multifunctional heat exchangers derived from three-dimensional micro-lattice structures[J]. International Journal of Heat and Mass Transfer,2012,55(9/10): 2486-2493. [8] MOON C,KIM D,ABADI G B,et al. Effect of ligament hollowness on heat transfer characteristics of open-cell metal foam[J]. International Journal of Heat and Mass Transfer,2016,102: 911-918. doi: 10.1016/j.ijheatmasstransfer.2016.06.068 [9] YANG Guangmeng,HOU Chi,ZHAO Meiying,et al. Comparison of convective heat transfer for Kagome and tetrahedral truss-cored lattice sandwich panels[J]. Scientific Reports,2019,9: 3731. doi: 10.1038/s41598-019-39704-2 [10] HOU Chi,YANG Guangmeng,WAN Xiaopeng,et al. Study of thermo-fluidic characteristics for geometric-anisotropy Kagome truss-cored lattice[J]. Chinese Journal of Aeronautics,2019,32(7): 1635-1645. doi: 10.1016/j.cja.2019.03.023 [11] CHAUDHARI A,EKADE P,KRISHNAN S. Experimental investigation of heat transfer and fluid flow in octet-truss lattice geometry[J]. International Journal of Thermal Sciences,2019,143: 64-75. doi: 10.1016/j.ijthermalsci.2019.05.003 [12] LIANG Dong,CHEN Wei,JU Yinchao,et al. Comparing endwall heat transfer among staggered pin fin, Kagome and body centered cubic arrays[J]. Applied Thermal Engineering,2021,185: 116306.1-116306.12. [13] XU Liang,CHEN Hanghang,XI Lei,et al. Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels[J]. Heat and Mass Transfer,2022,58(1): 41-64. doi: 10.1007/s00231-021-03100-2 [14] XU L,RUAN Q,SHEN Q,et al. Optimization design of lattice structures in internal cooling channel with variable aspect ratio of gas turbine blade[J]. Energies,2021,14(13): 3954.1-3954.27. [15] 高亮. 多功能复合点阵夹芯结构主动换热及优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2014.GAO Liang. Active heat transfer and optimization design for multi-functional composite sandwich structure with lattice truss cores[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese) [16] 闫宏斌. 基于X型金属点阵的通风制动盘对流传热强化研究[D]. 西安: 西安交通大学, 2015.YAN Hongbin. Convective heat transfer enhancement by X-type metallic lattice in ventilated brake disc[D]. Xi’an: Xi’an Jiaotong University, 2015. (in Chinese) [17] 张南. 增材制造含流道微桁架夹层壁板热—力性能分析[D]. 辽宁 大连: 大连理工大学, 2016.ZHANG Nan. Thermo-mechanical performance of micro-truss sandwiched panel with flow channels made by 3D printing[D]. Dalian Liaoning: Dalian University of Technology, 2016. (in Chinese) [18] 徐亮,谌清云,席雷,等. 微类桁架点阵结构填充内冷通道的多目标优化设计[J]. 西安交通大学学报,2020,54(3): 1-11.XU Liang,CHEN Qingyun,XI Lei,et al. Multi-objective optimization design of micro-class truss lattice structure for filling internal cooling channel[J]. Journal of Xi’an Jiaotong University,2020,54(3): 1-11. (in Chinese) [19] XI Lei,XU Liang,GAO Jianmin,et al. Study on flow and heat transfer performance of X-type truss array cooling channel[J]. Case Studies in Thermal Engineering,2021,26: 101034.1-101034.16. [20] 席雷,徐亮,高建民,等. X型桁架阵列通道流动及传热性能的数值研究[J]. 西安交通大学学报,2021,55(8): 101-110.XI Lei,XU Liang,GAO Jianmin,et al. Numerical research on flow and heat transfer performance of X-type truss array channels[J]. Journal of Xi’an Jiaotong University,2021,55(8): 101-110. (in Chinese) [21] LI Weihong,REN Jing,JIANG Hongde,et al. Assessment of six turbulence models for modeling and predicting narrow passage flows: Part 2 pin fin arrays[J]. Numerical Heat Transfer: Part A Applications,2016,69(5): 445-463. doi: 10.1080/10407782.2015.1081024 [22] HOFFMANN F, HODSON H, LU T J. Heat transfer performance and pressure drop of Kagome core metal truss panels[D]. Cambridge, UK: University of Cambridge, 2002. [23] WYANTUTI S,SETYORINI Z,ISHMAYANA S,et al. Optimization of voltammetric determination of dysprosium (Ⅲ) using plackett-burman and RSM-CCD experimental designs[J]. Baghdad Science Journal,2020,17(4): 1198-1206. doi: 10.21123/bsj.2020.17.4.1198