留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于响应面法的X型桁架阵列通道冷却性能优化

席雷 高建民 徐亮 赵振 李云龙

席雷, 高建民, 徐亮, 等. 基于响应面法的X型桁架阵列通道冷却性能优化[J]. 航空动力学报, 2024, 39(1):20220135 doi: 10.13224/j.cnki.jasp.20220135
引用本文: 席雷, 高建民, 徐亮, 等. 基于响应面法的X型桁架阵列通道冷却性能优化[J]. 航空动力学报, 2024, 39(1):20220135 doi: 10.13224/j.cnki.jasp.20220135
XI Lei, GAO Jianmin, XU Liang, et al. Optimization of cooling performance of X-type truss array channel based on response surface methodology[J]. Journal of Aerospace Power, 2024, 39(1):20220135 doi: 10.13224/j.cnki.jasp.20220135
Citation: XI Lei, GAO Jianmin, XU Liang, et al. Optimization of cooling performance of X-type truss array channel based on response surface methodology[J]. Journal of Aerospace Power, 2024, 39(1):20220135 doi: 10.13224/j.cnki.jasp.20220135

基于响应面法的X型桁架阵列通道冷却性能优化

doi: 10.13224/j.cnki.jasp.20220135
基金项目: 陕西省自然科学基础研究计划青年项目(2022JQ-545); 中国博士后科学基金(2021M702573)
详细信息
    作者简介:

    席雷(1990-),男,助理教授,博士,研究方向为涡轮叶片冷却技术。E-mail:xilei100@mail.xjtu.edu.cn

    通讯作者:

    徐亮(1980-),男,教授,博士,研究方向为涡轮叶片冷却技术。E-mail:xuliang@mail.xjtu.edu.cn

  • 中图分类号: V233.5;TK47

Optimization of cooling performance of X-type truss array channel based on response surface methodology

  • 摘要:

    基于数值结果构建了有关X型桁架通道壁面平均努塞尔数、摩擦因数和综合热力系数的2阶响应面模型,分析了桁架杆直径比、桁架杆夹角和桁架杆倾角等对X型桁架通道冷却性能的影响规律,并优化得到了最佳参数。结果表明:增大桁架杆直径比和桁架杆夹角均可以快速地提高平均努塞尔数,但也相应地增大了摩擦因数;增大桁架杆倾角先提高后又降低了平均努塞尔数和摩擦因数;增大桁架杆直径比、桁架杆夹角和桁架杆倾角均会使综合热力系数先增大后减小。当桁架杆直径比为0.0750、桁架杆夹角为60°和桁架杆倾角为33.79°时通道的传热性能最优;当桁架杆直径比为0.067、桁架杆夹角为37.88°和桁架杆倾角为31.36°时通道的综合热力性能最优。

     

  • 图 1  研究对象

    Figure 1.  Research object

    图 2  数值模型

    Figure 2.  Numerical model

    图 3  网格模型

    Figure 3.  Grid models

    图 4  数值方法验证

    Figure 4.  Numerical method verification

    图 5  响应面模型的拟合偏差

    Figure 5.  Fitting deviations of response surface models

    图 6  标准化效应的Pareto图(Re=30 000)

    Figure 6.  Pareto diagrams of standardization effects (Re=30 000)

    图 7  Nua的响应图(Re=30 000)

    Figure 7.  Response diagrams of NuaRe=30 000)

    图 8  f的响应面图(Re=30 000)

    Figure 8.  Response diagrams of fRe=30 000)

    图 9  F的响应面(Re=30 000)

    Figure 9.  Response diagrams of FRe=30 000)

    图 10  优化结果(Re=30 000)

    Figure 10.  Optimization results (Re=30 000)

    表  1  设计变量及其水平

    Table  1.   Design variables and their levels

    变量水平
    d/D0.03750.05630.0750
    α/(°)304560
    β/(°)153045
    下载: 导出CSV

    表  2  CCF试验设计

    Table  2.   CCF experimental design

    序号输入参数输出参数序号输入参数输出参数
    d/Dα/(°)β/(°)NuafFd/Dα/(°)β/(°)NuafF
    10.03754530100.6780.0380.619110.07503015114.5290.0600.606
    20.05634530120.4640.0540.660120.07506045134.0400.1030.592
    30.0375304594.2620.0380.582130.07506015129.9250.0840.615
    40.05634515111.9560.0480.637140.07504530138.6370.0750.680
    50.05634530120.4640.0540.660150.05633030114.1420.0470.653
    60.05636030124.2940.0610.655160.05634530120.4640.0540.660
    70.07503045129.4000.0700.651170.0375604597.1200.0480.554
    80.05634530120.4640.0540.660180.05634530120.4640.0540.660
    90.05634545114.8640.0530.633190.0375301598.2380.0350.620
    100.03756015103.2330.0420.616200.05634530120.4640.0540.660
    下载: 导出CSV

    表  3  NuafF模型的回归系数

    Table  3.   Regression coefficients for models of Nuaf and F

    回归系数NuafF
    b049.70.0956−0.014
    b1299−1.7069.68
    b20.483−0.0016130.02546
    b31.435−0.0002780.00577
    b11−101614.54−83.7
    b22−0.003540.000011−0.00025
    b33−0.02935−0.0000050.000015
    b125.410.01809−0.0169
    b1312.920.00925−0.0577
    b23− 0.007160.0000070.000008
    下载: 导出CSV
  • [1] 席雷,高建民,徐亮,等. 涡轮叶片前缘阵列冲击冷却流动及传热特性数值研究[J]. 工程热物理学报,2021,42(2): 430-437.

    XI Lei,GAO Jianmin,XU Liang,et al. Numerical study on flow and heat transfer characteristics of jet array impingement cooling in turbine blade leading edge[J]. Journal of Engineering Thermophysics,2021,42(2): 430-437. (in Chinese)
    [2] 李拓. 点阵多孔金属夹芯板振动特性分析及优化分析[D]. 西安 : 西安交通大学, 2008.

    LI Tuo. Research on vibration characteristics and optimization of truss-cored metal sandwich plate[D]. Xi’an: Xi’an Jiaotong University, 2008. (in Chinese)
    [3] 吴林志,殷莎,马力. 复合材料点阵夹芯结构的耦合换热及热应力分析[J]. 功能材料,2010,41(6): 969-972.

    WU Linzhi,YIN Sha,MA Li. Coupled heat transfer and thermal stress analysis of composite lattice core sandwich structure[J]. Journal of Functional Materials,2010,41(6): 969-972. (in Chinese)
    [4] SCHAEDLER T A,JACOBSEN A J,TORRENTS A,et al. Ultralight metallic microlattices[J]. Science,2011,334(6058): 962-965. doi: 10.1126/science.1211649
    [5] ZHANG Qian,JIANG Wenchun,ZHAO Bing,et al. A study of the effective elastic modulus of a lattice truss panel structure by experimental and theoretical analysis[J]. Composite Structures,2017,165: 130-137. doi: 10.1016/j.compstruct.2017.01.012
    [6] 易长炎. 基于SLM的应力匹配变密度轻质金属点阵结构设计及力学性能研究[D]. 重庆: 重庆大学, 2019.

    YI Changyan. Design of stress-matched variable density light metal lattice structure based on SLM and study on its mechanical properties[D]. Chongqing: Chongqing University, 2019. (in Chinese)
    [7] MALONEY K J,FINK K D,SCHAEDLER T A,et al. Multifunctional heat exchangers derived from three-dimensional micro-lattice structures[J]. International Journal of Heat and Mass Transfer,2012,55(9/10): 2486-2493.
    [8] MOON C,KIM D,ABADI G B,et al. Effect of ligament hollowness on heat transfer characteristics of open-cell metal foam[J]. International Journal of Heat and Mass Transfer,2016,102: 911-918. doi: 10.1016/j.ijheatmasstransfer.2016.06.068
    [9] YANG Guangmeng,HOU Chi,ZHAO Meiying,et al. Comparison of convective heat transfer for Kagome and tetrahedral truss-cored lattice sandwich panels[J]. Scientific Reports,2019,9: 3731. doi: 10.1038/s41598-019-39704-2
    [10] HOU Chi,YANG Guangmeng,WAN Xiaopeng,et al. Study of thermo-fluidic characteristics for geometric-anisotropy Kagome truss-cored lattice[J]. Chinese Journal of Aeronautics,2019,32(7): 1635-1645. doi: 10.1016/j.cja.2019.03.023
    [11] CHAUDHARI A,EKADE P,KRISHNAN S. Experimental investigation of heat transfer and fluid flow in octet-truss lattice geometry[J]. International Journal of Thermal Sciences,2019,143: 64-75. doi: 10.1016/j.ijthermalsci.2019.05.003
    [12] LIANG Dong,CHEN Wei,JU Yinchao,et al. Comparing endwall heat transfer among staggered pin fin, Kagome and body centered cubic arrays[J]. Applied Thermal Engineering,2021,185: 116306.1-116306.12.
    [13] XU Liang,CHEN Hanghang,XI Lei,et al. Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels[J]. Heat and Mass Transfer,2022,58(1): 41-64. doi: 10.1007/s00231-021-03100-2
    [14] XU L,RUAN Q,SHEN Q,et al. Optimization design of lattice structures in internal cooling channel with variable aspect ratio of gas turbine blade[J]. Energies,2021,14(13): 3954.1-3954.27.
    [15] 高亮. 多功能复合点阵夹芯结构主动换热及优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    GAO Liang. Active heat transfer and optimization design for multi-functional composite sandwich structure with lattice truss cores[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese)
    [16] 闫宏斌. 基于X型金属点阵的通风制动盘对流传热强化研究[D]. 西安: 西安交通大学, 2015.

    YAN Hongbin. Convective heat transfer enhancement by X-type metallic lattice in ventilated brake disc[D]. Xi’an: Xi’an Jiaotong University, 2015. (in Chinese)
    [17] 张南. 增材制造含流道微桁架夹层壁板热—力性能分析[D]. 辽宁 大连: 大连理工大学, 2016.

    ZHANG Nan. Thermo-mechanical performance of micro-truss sandwiched panel with flow channels made by 3D printing[D]. Dalian Liaoning: Dalian University of Technology, 2016. (in Chinese)
    [18] 徐亮,谌清云,席雷,等. 微类桁架点阵结构填充内冷通道的多目标优化设计[J]. 西安交通大学学报,2020,54(3): 1-11.

    XU Liang,CHEN Qingyun,XI Lei,et al. Multi-objective optimization design of micro-class truss lattice structure for filling internal cooling channel[J]. Journal of Xi’an Jiaotong University,2020,54(3): 1-11. (in Chinese)
    [19] XI Lei,XU Liang,GAO Jianmin,et al. Study on flow and heat transfer performance of X-type truss array cooling channel[J]. Case Studies in Thermal Engineering,2021,26: 101034.1-101034.16.
    [20] 席雷,徐亮,高建民,等. X型桁架阵列通道流动及传热性能的数值研究[J]. 西安交通大学学报,2021,55(8): 101-110.

    XI Lei,XU Liang,GAO Jianmin,et al. Numerical research on flow and heat transfer performance of X-type truss array channels[J]. Journal of Xi’an Jiaotong University,2021,55(8): 101-110. (in Chinese)
    [21] LI Weihong,REN Jing,JIANG Hongde,et al. Assessment of six turbulence models for modeling and predicting narrow passage flows: Part 2 pin fin arrays[J]. Numerical Heat Transfer: Part A Applications,2016,69(5): 445-463. doi: 10.1080/10407782.2015.1081024
    [22] HOFFMANN F, HODSON H, LU T J. Heat transfer performance and pressure drop of Kagome core metal truss panels[D]. Cambridge, UK: University of Cambridge, 2002.
    [23] WYANTUTI S,SETYORINI Z,ISHMAYANA S,et al. Optimization of voltammetric determination of dysprosium (Ⅲ) using plackett-burman and RSM-CCD experimental designs[J]. Baghdad Science Journal,2020,17(4): 1198-1206. doi: 10.21123/bsj.2020.17.4.1198
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  147
  • HTML浏览量:  35
  • PDF量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-15
  • 网络出版日期:  2023-09-06

目录

    /

    返回文章
    返回