留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转速匹配效应影响下周向槽机匣处理对转压气机性能的影响

张冉 刘波 茅晓晨 张博涛 巫骁雄

张冉, 刘波, 茅晓晨, 等. 转速匹配效应影响下周向槽机匣处理对转压气机性能的影响[J]. 航空动力学报, 2024, 39(1):20220148 doi: 10.13224/j.cnki.jasp.20220148
引用本文: 张冉, 刘波, 茅晓晨, 等. 转速匹配效应影响下周向槽机匣处理对转压气机性能的影响[J]. 航空动力学报, 2024, 39(1):20220148 doi: 10.13224/j.cnki.jasp.20220148
ZHANG Ran, LIU Bo, MAO Xiaochen, et al. Effect of circumferential groove casing treatment on performance of counter-rotating compressor under influence of speed matching effect[J]. Journal of Aerospace Power, 2024, 39(1):20220148 doi: 10.13224/j.cnki.jasp.20220148
Citation: ZHANG Ran, LIU Bo, MAO Xiaochen, et al. Effect of circumferential groove casing treatment on performance of counter-rotating compressor under influence of speed matching effect[J]. Journal of Aerospace Power, 2024, 39(1):20220148 doi: 10.13224/j.cnki.jasp.20220148

转速匹配效应影响下周向槽机匣处理对转压气机性能的影响

doi: 10.13224/j.cnki.jasp.20220148
基金项目: 国家自然科学基金(52106057); 翼型、叶栅空气动力学国家级重点实验室基金(D5150210006,D5050210015)
详细信息
    作者简介:

    张冉(1999-),男,硕士生,研究领域为叶轮机械气动热力学。E-mail:949089867@mail.nwpu.edu.cn

    通讯作者:

    茅晓晨(1989-),男,副教授、硕士生导师,博士,研究领域为叶轮机械气动热力学。E-mail:maoxiao_chen@nwpu.edu.cn

  • 中图分类号: V231.3

Effect of circumferential groove casing treatment on performance of counter-rotating compressor under influence of speed matching effect

  • 摘要:

    采用数值模拟方法,通过分别在对转压气机(counter-rotating compressor, CRC)前后两排转子上进行周向槽机匣处理,研究了其在不同转速匹配方案下的扩稳效果以及对转压气机最先失速级的变化规律。结果表明:当前排转子R1转速高于后排转子R2时,其最先失速级为R1,当R2转速等于或高于R1时,其最先失速级为R2。在对转压气机的最先失速级进行机匣处理可以有效改善所处理转子的叶尖附近流场,包括来流相对气流角的减小、叶尖泄漏流反向轴向动量的减小、叶尖泄漏流与主流交界面位置的后移及叶尖堵塞程度的减弱等,进而提升了其失速裕度。机匣处理一般仅能对所处理转子的流场产生较大影响,但在特殊情况下也会使非处理转子的流场发生明显改变。

     

  • 图 1  对转压气机实物图

    Figure 1.  Physical drawing of the CRC

    图 2  周向槽机匣处理的几何示意图[27]

    Figure 2.  Geometric schematic diagram of circumferential groove casing treatment[27]

    图 3  对转压气机与周向槽机匣处理结构图

    Figure 3.  Structure diagram of CRC and circumferential groove casing treatment

    图 4  叶片通道及周向槽网格划分

    Figure 4.  Grid distribution of blade passage and circumferential groove

    图 5  不同转速匹配方案中对转压气机的等熵效率特性线

    Figure 5.  Isentropic efficiency characteristic lines of CRC in different speed matching schemes

    图 6  不同转速匹配方案中对转压气机的总压比特性线

    Figure 6.  Total pressure ratio characteristic lines of CRC in different speed matching schemes

    图 7  不同转速匹配时对转压气机进行机匣处理后的失速裕度改进量

    Figure 7.  Stall margin improvement of CRC after casing treatment in different speed matching schemes

    图 8  不同转速匹配时对转压气机的速度三角形示意图

    Figure 8.  Schematic diagrams of velocity triangle of CRC in different speed matching schemes

    图 9  R1和R2的周向质量平均出口相对气流角沿展向分布

    Figure 9.  Spanwise distributions of mass pitch-averaged relative flow angle at the outlet of R1 and R2

    图 10  99%叶展处R1和R2叶尖静压系数沿相对轴向弦长分布

    Figure 10.  Distributions along normalized axial chord of tip static pressure coefficient of R1 and R2 at 99% blade span

    图 11  R1和R2在99%叶展的熵云图

    Figure 11.  Entropy contours of R1 and R2 at 99% blade span

    图 12  R1和R2叶尖泄漏流轴向动量沿相对轴向弦长分布

    Figure 12.  Distributions along normalized axial chord of tip leakage flow axial momentum of R1 and R2

    图 13  R1和R2进口周向质量平均来流相对气流角沿展向分布

    Figure 13.  Spanwise distributions of mass pitch-averaged relative flow angle at the inlet of R1 and R2

    图 14  R1和R2在99%叶展截面的相对马赫数云图

    Figure 14.  Relative Mach number contours of R1 and R2 at 99% blade span

    图 15  R1和R2叶尖泄漏流气流角沿相对轴向弦长分布

    Figure 15.  Distributions along normalized axial chord of tip leakage flow angle of R1 and R2

    图 16  R1和R2的叶尖泄漏流三维流线图

    Figure 16.  Three-dimensional streamlines of tip leakage flow of R1 and R2

    表  1  对转压气机两排转子的主要设计参数

    Table  1.   Main design parameters of two rotors of the CRC

    设计参数前排转子R1后排转子R2
    叶片数1920
    进口轮毂比0.4850.641
    转速/(r/min)8000−8000
    叶尖弦长/m0.08320.0769
    叶尖线速度/(m/s)167.6167.6
    叶尖间隙/mm0.50.5
    下载: 导出CSV

    表  2  前后排转子的转速匹配方案

    Table  2.   Speed matching schemes of front and rear rotor

    参数方案1方案2方案3方案4方案5方案6方案7
    n1/%10010090901008080
    n2/%10090100908010080
    下载: 导出CSV

    表  3  不同转速匹配时R1和R2的U和ΔWu

    Table  3.   U and ΔWu of R1 and R2 in different speed matching schemes

    转速匹配
    方案
    R1R2
    UΔWuUΔWu
    n1=n2
    n1<n2
    n1>n2
    下载: 导出CSV

    表  4  R1和R2在不同转速匹配方案下近失速点的叶尖相对负荷

    Table  4.   Relative blade tip loading of R1 and R2 at near stall point in different speed matching schemes

    转速匹配方案叶尖相对负荷
    R1R2
    100%-100%11
    100%-80%0.9810.814
    80%-100%0.9381.279
    下载: 导出CSV
  • [1] YAMADA K, KIKUTA H, IWAKIRI K, et al. An explanation for flow features of spike-type stall inception in an axial compressor rotor[C]//Proceedings of ASME Turbo Expo 2012. Copenhagen, Denmark: ASME, 2012: 2663-2675.
    [2] WEICHERT S,DAY I. Detailed measurements of spike formation in an axial compressor[J]. Journal of Turbomachinery,2014,136(5): 051006.1-051006.9. .
    [3] DAY I J. Stall, surge, and 75 years of research[J]. Journal of Turbomachinery,2016,138(1): 011001.1-011001.16.
    [4] LIN Feng,ZHANG Jingxuan,CHEN Jingyi,et al. Flow structure of short-length-scale disturbance in an axial-flow compressor[J]. Journal of Propulsion and Power,2008,24(6): 1301-1308. doi: 10.2514/1.36525
    [5] GOURDAIN N,WLASSOW F,OTTAVY X. Effect of tip clearance dimensions and control of unsteady flows in a multi-stage high-pressure compressor[J]. Journal of Turbomachinery,2012,134(5): 051005.1-051005.13.
    [6] CAMERON J D,BENNINGTON M A,ROSS M H,et al. The influence of tip clearance momentum flux on stall inception in a high-speed axial compressor[J]. Journal of Turbomachinery,2013,135(5): 051005.1-051005.11.
    [7] HATHAWAY M D. Passive endwall treatments for enhancing stability[R]. ARL-TR-3878, 2007.
    [8] ZHOU Xiaoyong,ZHAO Qingjun,XIANG Xiaorong,et al. Investigation of groove casing treatment in a transonic compressor at different speeds with control volume method[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,2016,230(13): 2392-2408. doi: 10.1177/0954410015625666
    [9] 张皓光,安康,吴艳辉,等. 周向槽轴向位置影响机匣处理扩稳能力的机理[J]. 推进技术,2016,37(12): 2296-2302. doi: 10.13675/j.cnki.tjjs.2016.12.012

    ZHANG Haoguang,AN Kang,WU Yanhui,et al. Mechanism of affecting ability of casing treatment to improve stall margin with varying axial position of circumferential grooves[J]. Journal of Propulsion Technology,2016,37(12): 2296-2302. (in Chinese) doi: 10.13675/j.cnki.tjjs.2016.12.012
    [10] SHABBIR A,ADAMCZYK J J. Flow mechanism for stall margin improvement due to circumferential casing grooves on axial compressors[J]. Journal of Turbomachinery,2005,127(4): 708-717. doi: 10.1115/1.2008970
    [11] ZHANG Haoguang, TAN Feng, WU Yanhui, et al. Experimental and numerical investigation of effect of center offset degree on compressor stability with circumferential grooved casing treatment[R]. Seoul, South Korea: ASME Turbo Expo: Turbomachinery Technical Conference and Exposition, 2016.
    [12] 王广,楚武利,陈向艺,等. 轴向偏转型自循环机匣处理对高速压气机扩稳效果的影响机理[J]. 推进技术,2020,41(12): 2691-2699. doi: 10.13675/j.cnki.tjjs.190697

    WANG Guang,CHU Wuli,CHEN Xiangyi,et al. Influence mechanism of axial deflection self-circulating casing treatment on stability enhancement of high-speed compressor[J]. Journal of Propulsion Technology,2020,41(12): 2691-2699. (in Chinese) doi: 10.13675/j.cnki.tjjs.190697
    [13] RABE D C, HAH C. Application of casing circumferential grooves for improved stall margin in a transonic axial compressor[C]//Proceedings of ASME Turbo Expo: Power for Land, Sea, and Air. Amsterdam, The Netherlands: ASME, 2002: 1141-1153.
    [14] HUANG Xudong,CHEN Haixin,SHI Ke,et al. An analysis of the Circumferential Grooves Casing Treatment for transonic compressor flow[J]. Science China Physics, Mechanics and Astronomy,2010,53(2): 353-359. doi: 10.1007/s11433-010-0123-0
    [15] CHEN Haixin,HUANG Xudong,SHI Ke,et al. A computational fluid dynamics study of circumferential groove casing treatment in a transonic axial compressor[J]. Journal of Turbomachinery,2014,136(3): 031003.1-031003.11.
    [16] WILKE I, KAU H P. A numerical investigation of the influence of casing treatments on the tip leakage flow in a HPC front stage[C]//Proceedings of ASME Turbo Expo: Power for Land, Sea, and Air. Amsterdam, The Netherlands: ASME, 2002: 1155-1165.
    [17] SAKUMA Y,WATANABE T,HIMENO T,et al. Numerical analysis of flow in a transonic compressor with a single circumferential casing groove: influence of groove location and depth on flow instability[J]. Journal of Turbomachinery,2014,136(3): 031017.1-031017.11.
    [18] LU X G, CHU W L, ZHU J Q, et al. Mechanism of the interaction between casing treatment and tip leakage flow in a subsonic axial compressor[C]//Proceedings of ASME Turbo Expo: Power for Land, Sea, and Air. Barcelona, Spain: ASME, 2008: 79-90.
    [19] DU J, LI F, LI J C, et al. A study of performance and flow mechanism of a slot-groove hybrid casing treatment in a low-speed compressor[C]//Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Montréal, Canada: ASME, 2015: V2C-V44C.
    [20] LIU Le,LI Jichao,NAN Xi,et al. The stall inceptions in an axial compressor with single circumferential groove casing treatment at different axial locations[J]. Aerospace Science and Technology,2016,59: 145-154. doi: 10.1016/j.ast.2016.10.014
    [21] DU Juan,LI Jichao,GAO Lipeng,et al. The impact of casing groove location on stall margin and tip clearance flow in a low-speed axial compressor[J]. Journal of Turbomachinery,2016,138(12): 121007.1-121007.11.
    [22] SCHIMMING P. Counter rotating fans: an aircraft propulsion for the future?[J]. Journal of Thermal Science,2003,12(2): 97-103. doi: 10.1007/s11630-003-0049-1
    [23] SHARMA P B,JAIN Y P,PUNDHIR D S. A study of some factors affecting the performance of a contra-rotating axial compressor stage[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Power and Process Engineering,1988,202(1): 15-21. doi: 10.1243/PIME_PROC_1988_202_003_02
    [24] GAO L M, LI X J, XIE J, et al. The effect of speed ratio on the first rotating stall stage in contra-rotating compressor[C]//Proceedings of ASME Turbo Expo. Copenhagen, Denmark: ASME, 2012: 207-216
    [25] MAO Xiaochen,LIU Bo,ZHAO Hang. Numerical investigation for the impact of single groove on the stall margin improvement and the unsteadiness of tip leakage flow in a counter-rotating axial flow compressor[J]. Energies,2017,10(8): 1153.1-1153.18.
    [26] MAO Xiaochen,LIU Bo,ZHAO Hang. Numerical analysis of the circumferential grooves casing treatment in a counter-rotating axial flow compressor[J]. Applied Thermal Engineering,2018,130: 29-39. doi: 10.1016/j.applthermaleng.2017.11.044
    [27] MAO Xiaochen,LIU Bo. Investigation of the casing groove location effect for a large tip clearance in a counter-rotating axial flow compressor[J]. Aerospace Science and Technology,2020,105: 106059.1-106059.12.
    [28] WANG Yangang,CHEN Weixiong,WU Canghai,et al. Effects of tip clearance size on the performance and tip leakage vortex in dual-rows counter-rotating compressor[J]. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering,2015,229(11): 1953-1965. doi: 10.1177/0954410014562483
    [29] 王昊,薛飞,岳少原,等. 对转压气机变转速比失速特性试验研究[J]. 西北工业大学学报,2021,39(6): 1340-1348. doi: 10.1051/jnwpu/20213961340

    WANG Hao,XUE Fei,YUE Shaoyuan,et al. Experimental investigation on stall characteristics of contra-rotating compressor with variable speed ratios[J]. Journal of Northwestern Polytechnical University,2021,39(6): 1340-1348. (in Chinese) doi: 10.1051/jnwpu/20213961340
    [30] 李晓军,高丽敏,谢建,等. 双级对转压气机的失速机理[J]. 航空动力学报,2013,28(1): 188-194. doi: 10.13224/j.cnki.jasp.2013.01.025

    LI Xiaojun,GAO Limin,XIE Jian,et al. Rotating stall mechanism of dual-stage contra-rotating compressor[J]. Journal of Aerospace Power,2013,28(1): 188-194. (in Chinese) doi: 10.13224/j.cnki.jasp.2013.01.025
    [31] CAMP T R, DAY I J. A study of spike and modal stall phenomena in a low-speed axial compressor[R]. Orlando, US: ASME International Gas Turbine and Aeroengine Congress and Exhibition, 1997.
    [32] VO H D,TAN C S,GREITZER E M. Criteria for spike initiated rotating stall[J]. Journal of Turbomachinery,2008,130(1): 011023.1-011023.9.
    [33] CEVIK M,DUC VO H,YU Hong. Casing treatment for desensitization of compressor performance and stability to tip clearance[J]. Journal of Turbomachinery,2016,138(12): 121008.1-121008.16.
    [34] MAO Xiaochen,LIU Bo,ABDUL R,et al. Numerical investigation into the effects of casing aspiration on the overall performance and flow unsteadiness in a counter-rotating axial flow compressor[J]. Aerospace Science and Technology,2018,78: 671-681. doi: 10.1016/j.ast.2018.05.028
    [35] KHALID S A,KHALSA A S,WAITZ I A,et al. Endwall blockage in axial compressors[J]. Journal of Turbomachinery,1999,121(3): 499-509. doi: 10.1115/1.2841344
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  41
  • HTML浏览量:  18
  • PDF量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-22
  • 网络出版日期:  2023-09-13

目录

    /

    返回文章
    返回