留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流体喷管对脉冲爆震发动机推进性能的影响

门凯 邱华 严宇 熊姹 陈山山

门凯, 邱华, 严宇, 等. 流体喷管对脉冲爆震发动机推进性能的影响[J]. 航空动力学报, 2024, 39(2):20220149 doi: 10.13224/j.cnki.jasp.20220149
引用本文: 门凯, 邱华, 严宇, 等. 流体喷管对脉冲爆震发动机推进性能的影响[J]. 航空动力学报, 2024, 39(2):20220149 doi: 10.13224/j.cnki.jasp.20220149
MEN Kai, QIU Hua, YAN Yu, et al. Impact of fluidic nozzle on propulsion performance of pulse detonation engine[J]. Journal of Aerospace Power, 2024, 39(2):20220149 doi: 10.13224/j.cnki.jasp.20220149
Citation: MEN Kai, QIU Hua, YAN Yu, et al. Impact of fluidic nozzle on propulsion performance of pulse detonation engine[J]. Journal of Aerospace Power, 2024, 39(2):20220149 doi: 10.13224/j.cnki.jasp.20220149

流体喷管对脉冲爆震发动机推进性能的影响

doi: 10.13224/j.cnki.jasp.20220149
基金项目: 陕西省自然科学基础研究计划(2020JZ-09)
详细信息
    作者简介:

    门凯(1997-),男,硕士生,主要从事爆震推进性能优化研究。E-mail:1065277470@qq.com

    通讯作者:

    邱华(1978-),男,教授,博士,主要从事爆震推进的应用基础研究。 E-mail:qiuhua@nwpu.edu.cn

  • 中图分类号: V231.2

Impact of fluidic nozzle on propulsion performance of pulse detonation engine

  • 摘要:

    为了进一步提高脉冲爆震发动机(PDE)的推进性能,对PDE使用流体喷管模型进行了多循环数值模拟研究,并提出了主次流错相位喷注方案。结果表明:主次流错相位喷注方案不仅可以调节主流和二次流的有效流通面积,改善喷管的非设计点状态,而且可以提高爆震室内可燃气最终充填压力,增强爆震燃烧强度;在主次流错相位喷注方案下,喷管主流进口瞬时气流总压相对喷管设计点的离散程度明显下降,有效改善了喷管的非设计点状态;最佳的主次流相位差为反传压缩波恰好传播至爆震室头部这一工况,最佳的二次流喷注位置为喷管喉部;相比基准喷管的最大比冲性能,PDE使用流体喷管可以产生5.64%的比冲增益。

     

  • 图 1  PDE计算物理模型示意图

    Figure 1.  Sketch of computational model for PDE

    图 2  3种不同网格密度下喷管瞬时推力对比图

    Figure 2.  Instantaneous thrust profiles of three nozzle models with different mesh densities

    图 3  喷管进口主流、二次流和点火区的总压瞬态图

    Figure 3.  Total pressure profiles of main flow, secondary flow and ignition zone

    图 4  喷管比冲性能和爆震室内可燃气最终充填压力压力瞬态图

    Figure 4.  Specific impulse profiles of nozzle and actual filling pressure of combustible gas

    图 5  喷管推力性能和主流阻塞系数瞬态图

    Figure 5.  Thrust performance profiles of nozzle and main flow blocking coefficient

    图 6  主流爆震排气阶段的马赫数分布对比图

    Figure 6.  Velocity contours in the detonation exhaust stage of main flow

    图 7  二次流爆震排气阶段的马赫数分布对比图

    Figure 7.  Velocity contours in the detonation exhaust stage of secondary flow

    图 8  点火前可燃气填充状态

    Figure 8.  Combustible gas filling states before ignition

    图 9  点火前可燃气压力分布云图

    Figure 9.  Pressure contours of combustible gas before ignition

    图 10  基准喷管和相位差为3.0 ms工况时的喷管主流进口总压瞬态对比图

    Figure 10.  Total pressure profiles at the inlet of the baseline nozzle of main flow and the fluidic nozzle with a phase difference of 3.0 ms

    图 11  主次流相位差在1.5 ms和3.0 ms工况时喷管主流进口总压瞬态对比图

    Figure 11.  Total pressure profiles at the inlet of the fluidic nozzles with phase differences of 1.5 ms and 3.0 ms

    图 12  不同二次流喷注位置下喷管比冲性能和爆震室内可燃气最终充填压力分布图

    Figure 12.  Specific impulse profiles of nozzles and the actual filling pressure of combustible gas under different secondary flow injection positions

    图 13  不同二次流喷注角度下喷管比冲性能和爆震室内可燃气最终充填压力分布图

    Figure 13.  Specific impulse profiles of nozzles and actual filling pressure of combustible gas under different secondary flow injection angles

    图 14  不同二次流喷注面积下喷管比冲性能和爆震室内可燃气最终充填压力分布图

    Figure 14.  Specific impulse profiles of nozzles and actual filling pressure of combustible gas under different secondary flow injection areas

    表  1  数值模拟计算得到的爆震参数和相同工况下CEA计算结果

    Table  1.   Detonation parameters obtained from numerical simulation and CEA calculation results under the same operating conditions

    类型V/(m/s)T/K
    CEA1833.02863
    基准喷管21162919
    下载: 导出CSV
  • [1] SMIRNOV N. Pulse detonation engines: advantages and limitations[C]//Advanced Combustion and Aerothermal Technologies. Dordrecht, the Netherlands: Springer, 2007: 353-363.
    [2] STUESSY W, WILSON D, STUESSY W, et al. Experimental investigation of an annular multi-cycle pulsed detonation wave engine[R]. AIAA-1997-808, 1997.
    [3] MANGIN B, CHPOUN A, JACQUIN L. Experimental and numerical study of the fluidic thrust vectoring of a two-dimensional supersonic nozzle[R]. AIAA-2006-3666, 2006.
    [4] 王研艳,翁春生. 基于带源项非结构网格CE/SE方法的PDRE爆轰排气流场中尾喷管特性研究[J]. 弹道学报,2016,28(4): 90-96. doi: 10.3969/j.issn.1004-499X.2016.04.017

    WANG Yanyan,WENG Chunsheng. Study on nozzle performances during detonation and exhaust process of PDRE based on unstructured meshes CE/SE method with stiff source term[J]. Journal of Ballistics,2016,28(4): 90-96. (in Chinese) doi: 10.3969/j.issn.1004-499X.2016.04.017
    [5] 范玮,严传俊,李强,等. 脉冲爆震发动机尾喷管的实验[J]. 航空动力学报,2007,22(6): 869-872. doi: 10.13224/j.cnki.jasp.2007.06.004

    FAN Wei,YAN Chuanjun,LI Qiang,et al. Experimental investigation on pulse detonation engine nozzles[J]. Journal of Aerospace Power,2007,22(6): 869-872. (in Chinese) doi: 10.13224/j.cnki.jasp.2007.06.004
    [6] ALLGOOD D, GUTMARK E, HOKE J, et al. Performance measurements of multi-cycle pulse detonation engine exhaust nozzles[R]. AIAA-2005-222, 2005.
    [7] MA Fuhua,CHOI J Y,YANG V. Thrust chamber dynamics and propulsive performance of multitube pulse detonation engines[J]. Journal of Propulsion and Power,2005,21(4): 681-691. doi: 10.2514/1.8182
    [8] MA Fuhua,CHOI J Y,YANG V. Propulsive performance of airbreathing pulse detonation engines[J]. Journal of Propulsion and Power,2006,22(6): 1188-1203. doi: 10.2514/1.21755
    [9] MCCLURE J R. Dynamic fluidic nozzles for pulse detonation engine applications[D]. Monterey, California: Naval Postgraduate School, 2010.
    [10] SMITH L R. Fluidically augmented nozzles for pulse detonation engine applications[D]. Monterey, California: Naval Postgraduate School, 2011.
    [11] BROPHY C, DAUSEN D, SMITH L R, et al. Fluidic nozzles for pulse detonation combustors[R]. AIAA-2012-1035, 2012.
    [12] 郑华雷,邱华,熊姹,等. 带二次流增推喷管的脉冲爆震发动机推进性能分析[J]. 推进技术,2014,35(7): 1002-1008. doi: 10.13675/j.cnki.tjjs.2014.07.018

    ZHENG Hualei,QIU Hua,XIONG Cha,et al. Propulsive performance of pulse detonation engine with fluidically augmented nozzle[J]. Journal of Propulsion Technology,2014,35(7): 1002-1008. (in Chinese) doi: 10.13675/j.cnki.tjjs.2014.07.018
    [13] 邱华,何有权,门凯. 流体喷管的脉冲爆震发动机出口过膨胀优化数值研究[J]. 火箭推进,2021,47(1): 29-35.

    QIU Hua,HE Youquan,MEN Kai. Numerical study on overexpansion optimization of pulse detonation engine with fluidic nozzle[J]. Journal of Rocket Propulsion,2021,47(1): 29-35. (in Chinese)
    [14] 邱华,龚婷婷,熊姹,等. 带二次流增推尾喷管的脉冲爆震发动机数值模拟研究[J]. 西北工业大学学报,2015,33(2): 271-277. doi: 10.3969/j.issn.1000-2758.2015.02.017

    QIU Hua,GONG Tingting,XIONG Cha,et al. Numerical simulation of pulse detonation engine (PDE) with fluidic nozzle[J]. Journal of Northwestern Polytechnical University,2015,33(2): 271-277. (in Chinese) doi: 10.3969/j.issn.1000-2758.2015.02.017
    [15] ZHANG Qibin,WANG Ke,DONG Rongxiao,et al. Experimental research on propulsive performance of the pulse detonation rocket engine with a fluidic nozzle[J]. Energy,2019,166: 1267-1275. doi: 10.1016/j.energy.2018.10.165
    [16] ZHANG Qibin,WANG Ke,WANG Jigang,et al. Experimental research on vector control features of a pulse detonation tube with fluidic nozzle[J]. Aerospace Science and Technology,2021,116: 106456. doi: 10.1016/j.ast.2020.106456
    [17] ZHANG Qibin,QIAO Xinqi,FAN Wei,et al. Study on operation and propulsion features of a pulse detonation rocket engine with secondary oxidizer injection[J]. Applied Thermal Engineering,2020,180: 115661. doi: 10.1016/j.applthermaleng.2020.115661
    [18] WITOSZYNSKI C. Streamline visualization[J]. Journal of the Aeronautical Sciences,1940,7(9): 402.
    [19] RICE T. 2D and 3D method of characteristic tools for complex nozzle development[R]. Washington: NASA Center for Aerospace Information (CASI), 2003.
    [20] 张群,严传俊,范玮,等. 部分填充对脉冲爆震发动机冲量的影响[J]. 推进技术,2006,27(3): 280-284. doi: 10.3321/j.issn:1001-4055.2006.03.021

    ZHANG Qun,YAN Chuanjun,FAN Wei,et al. Effects of partial filling on the impulse of pulse detonation engine[J]. Journal of Propulsion Technology,2006,27(3): 280-284. (in Chinese) doi: 10.3321/j.issn:1001-4055.2006.03.021
    [21] 王杰,刘建国,白桥栋,等. 填充系数对脉冲爆震发动机性能影响分析[J]. 南京理工大学学报(自然科学版),2008,32(1): 1-4.

    WANG Jie,LIU Jianguo,BAI Qiaodong,et al. Analysis of effects of filling coefficients on pulse detonation engine performance[J]. Journal of Nanjing University of Science and Technology (Natural Science),2008,32(1): 1-4. (in Chinese)
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  153
  • HTML浏览量:  76
  • PDF量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-23
  • 网络出版日期:  2023-10-08

目录

    /

    返回文章
    返回