Numerical analysis on combustion characteristics of n-heptane co-firing with methane
-
摘要:
针对燃气轮机的双燃料混合燃烧问题,采用直接关系图法对NUI(National University of Ireland)机理进行简化(含204组分,902步反应),在此基础上数值研究了甲烷质量分数和体积分数对正庚烷/甲烷混合燃烧特性的影响。结果表明:提高甲烷体积分数会使混合燃料的着火延迟时间非线性增加,层流火焰速度、绝热火焰温度、一氧化碳排放下降;当甲烷体积分数超过70%时,混合燃料的层流火焰速度和着火延迟时间对甲烷体积分数较为敏感。此外,对于采用正庚烷/甲烷的环形燃烧室,在保持混合燃料热值不变的条件下,两种燃料的火焰锋面位置基本相同,且随着甲烷质量分数的升高,火焰长度和托举高度逐渐增加,燃烧效率、总压损失、一氧化碳和氮氧化物排放逐渐下降;当甲烷质量分数低于30%时,火焰呈“V”型,高于30%时火焰呈“M”型。
Abstract:In view of the problem of dual-fuel mixed combustion of gas turbine, based on the NUI (National University of Ireland) mechanism, a reduced mechanism of n-heptane/methane combustion with 204 species and 902 reactions was obtained by applying the directed relation graph method. Effects of methane mass fraction and volume fraction in the n-heptane/methane mixture on combustion characteristics of n-heptane/methane were numerically studied based on the reduced mechanism. Results showed that increasing methane volume fraction in the fuel could increase ignition delays nonlinearly, and decrease laminar flame speeds adiabatic flame temperature and Carbon monoxide emission nonlinearly. When methane volume fraction in the fuel was above 70%, ignition delays and, laminar flame speeds were sensitive to fuel’s methane volume fraction. In the combustor, the positions of the flame fronts of n-heptane and methane were the same when co-firing n-heptane/methane. With the increase of methane mass fraction in the fuel, the flame length and flame lifted distance increased, while the combustion efficiency, pressure loss, Carbon monoxide emission and nitrogen oxide emissions decreased. When methane mass fraction in the fuel was below 30%, the flame was “V” shaped, and above this value the flame was “M” shaped.
-
Key words:
- gas turbine /
- n-heptane /
- methane /
- mechanism reduction /
- combustor
-
表 1 燃料组成及燃料质量流量
Table 1. Composition and mass flow rate of different fuels
组合编号 质量分数 质量流量/(kg/s) 正庚烷 甲烷 1 1 0 0.0301 2 0.7 0.3 0.0291 3 0.5 0.5 0.0285 4 0.3 0.7 0.0279 5 0 1 0.0270 表 2 甲烷质量分数对燃烧室性能和排放的影响
Table 2. Influence of methane mass fraction on combustor performances and emission
甲烷质量分数 效率/% 总压损失/% 出口温度分布系数 CO排放/(mg/m3) NOx排放/(mg/m3) 0 99.91 7.75 0.23 47.28 302.30 0.3 99.70 7.74 0.25 28.28 227.86 0.5 99.65 7.72 0.23 28.27 189.32 0.7 99.18 7.71 0.24 23.15 151.53 1 98.89 7.70 0.24 18.12 105.09 -
[1] 杨强. 中小型双燃料燃气轮机发展现状及应用前景分析[J]. 舰船科学技术,2019,41(3): 1-8.YANG Qiang. Development and application of small and medium-sized dual-fuel gas turbine[J]. Ship Science and Technology,2019,41(3): 1-8. (in Chinese) [2] 尉曙明,索建秦. 航空衍生工业燃气轮机双燃料贫燃预混低污染燃烧技术[J]. 航空动力学报,2015,30(9): 2049-2057.WEI Shuming,SUO Jianqin. Aero-derivative industrial gas turbine dual fuel lean premixed low emission combustion technology[J]. Journal of Aerospace Power,2015,30(9): 2049-2057. (in Chinese) [3] 刘明依,王冰晓,冉军辉,等. 燃气轮机双燃料切换控制策略研究[J]. 热能动力工程,2020,35(3): 45-50. doi: 10.16146/j.cnki.rndlgc.2020.03.006LIU Mingyi,WANG Bingxiao,RAN Junhui,et al. Research on duel fuel switching control strategies for the turbine[J]. Journal of Engineering for Thermal Energy and Power,2020,35(3): 45-50. (in Chinese) doi: 10.16146/j.cnki.rndlgc.2020.03.006 [4] LIANG Junjie,ZHANG Zunhua,LI Gesheng,et al. Experimental and kinetic studies of ignition processes of the methane-n-heptane mixtures[J]. Fuel,2019,235: 522-529. doi: 10.1016/j.fuel.2018.08.041 [5] GONG Zhen,FENG Liyan,WEI Lai,et al. Shock tube and kinetic study on ignition characteristics of lean methane/n-heptane mixtures at low and elevated pressures[J]. Energy,2020,197: 117242. doi: 10.1016/j.energy.2020.117242 [6] LI Gesheng,LIANG Junjie,ZHANG Zunhua,et al. Experimental investigation on laminar burning velocities and markstein lengths of premixed methane- n-heptane-air mixtures[J]. Energy & Fuels,2015,29(7): 4549-4556. [7] LI Jingrui,LIU Haifeng,LIU Xinlei,et al. Development of a simplified n-heptane/methane model for high-pressure direct-injection natural gas marine engines[J]. Frontiers in Energy,2021,15(2): 405-420. doi: 10.1007/s11708-021-0718-3 [8] LI Jingrui,LIU Xinlei,LIU Haifeng,et al. Kinetic study of the ignition process of methane/n-heptane fuel blends under high-pressure direct-injection natural gas engine conditions[J]. Energy & Fuels,2020,34(11): 14796-14813. [9] SORIANO B S,RICHARDSON E S. Investigation of flame propagation in autoignitive blends of n-heptane and methane fuel[J]. Combustion Theory and Modelling,2019,23(6): 1054-1070. doi: 10.1080/13647830.2019.1614228 [10] ZHANG Peng,RAN Jingyu,QIN Changlei,et al. Effects of methane addition on exhaust gas emissions and combustion efficiency of the premixed n-heptane/air combustion[J]. Energy & Fuels,2018,32(3): 3900-3907. [11] KACZMAREK D,ATAKAN B,KASPER T. Investigation of the partial oxidation of methane/n-heptane-mixtures and the interaction of methane and n-heptane under ultra-rich conditions[J]. Combustion and Flame,2019,205: 345-357. doi: 10.1016/j.combustflame.2019.04.005 [12] 宋超杰,李格升,梁俊杰,等. 甲烷氛围下正庚烷低温氧化特性[J]. 内燃机学报,2021,39(5): 385-394.SONG Chaojie,LI Gesheng,LIANG Junjie,et al. Low temperature oxidation characteristics of n-heptane in methane atmosphere[J]. Transactions of CSICE,2021,39(5): 385-394. (in Chinese) [13] CURRAN H J,GAFFURI P,PITZ W J,et al. A comprehensive modeling study of n-heptane oxidation[J]. Combustion and Flame,1998,114(1/2): 149-177. [14] ZHANG Kuiwen,BANYON C,BUGLER J,et al. An updated experimental and kinetic modeling study of n-heptane oxidation[J]. Combustion and Flame,2016,172: 116-135. doi: 10.1016/j.combustflame.2016.06.028 [15] WESTBROOK C K,PITZ W J,HERBINET O,et al. A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane[J]. Combustion and Flame,2009,156(1): 181-199. doi: 10.1016/j.combustflame.2008.07.014 [16] ATEF N,KUKKADAPU G,MOHAMED S Y,et al. A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics[J]. Combustion and Flame,2017,178: 111-134. doi: 10.1016/j.combustflame.2016.12.029 [17] MATSSON J E. An introduction to ANSYS Fluent 2021[M]. Mission, US: SDC Publications, 2021. [18] SIDEY J A M,MASTORAKOS E. Stabilisation of swirling dual-fuel flames[J]. Experimental Thermal and Fluid Science,2018,95: 65-72. doi: 10.1016/j.expthermflusci.2018.02.007 [19] EVANS M J,SIDEY J A M,YE J,et al. Temperature and reaction zone imaging in turbulent swirling dual-fuel flames[J]. Proceedings of the Combustion Institute,2019,37(2): 2159-2166. doi: 10.1016/j.proci.2018.07.076 [20] 杨强,李雅军,从文峰,等. 燃气轮机燃烧室双燃料混合燃烧数值模拟[J]. 动力工程学报,2021,41(8): 632-639.YANG Qiang,LI Yajun,CONG Wenfeng,et al. Numerical simulation of dual fuel mixed combustion in gas turbine combustor[J]. Journal of Chinese Society of Power Engineering,2021,41(8): 632-639. (in Chinese) [21] AGWU O,RUNYON J,GOKTEPE B,et al. Visualisation and performance evaluation of biodiesel/methane co-combustion in a swirl-stabilised gas turbine combustor[J]. Fuel,2020,277: 118172. doi: 10.1016/j.fuel.2020.118172 [22] 刘瑞同. 双燃料燃气轮机的燃料切换与混烧[J]. 燃气轮机技术,2001,14(1): 54-55. doi: 10.3969/j.issn.1009-2889.2001.01.009LIU Ruitong. Fuel switching and mixed combustion of dual-fuel gas turbine[J]. Gas Turbine Technology,2001,14(1): 54-55. (in Chinese) doi: 10.3969/j.issn.1009-2889.2001.01.009 [23] CHONG C T,CHIONG M C,NG J H,et al. Dual-fuel operation of biodiesel and natural gas in a model gas turbine combustor[J]. Energy & Fuels,2020,34(3): 3788-3796. [24] PRIELER R,DEMUTH M,SPOLJARIC D,et al. Numerical investigation of the steady flamelet approach under different combustion environments[J]. Fuel,2015,140: 731-743. doi: 10.1016/j.fuel.2014.10.006 [25] MAYR B,PRIELER R,DEMUTH M,et al. The usability and limits of the steady flamelet approach in oxy-fuel combustions[J]. Energy,2015,90: 1478-1489. doi: 10.1016/j.energy.2015.06.103 [26] PROCH F,KEMPF A M. Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds[J]. Proceedings of the Combustion Institute,2015,35(3): 3337-3345. doi: 10.1016/j.proci.2014.07.036 [27] SEE Y C,IHME M. Large eddy simulation of a partially-premixed gas turbine model combustor[J]. Proceedings of the Combustion Institute,2015,35(2): 1225-1234. doi: 10.1016/j.proci.2014.08.006 [28] 徐榕. 湍流燃烧模型在航空发动机燃烧室中的应用研究[D]. 南京: 南京航空航天大学, 2014.XU Rong. Research on application of turbulent combustion models for combustion flows of aero-engine combustors[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. (in Chinese)