Optimization method on flame transfer function of combustor based on experimental data
-
摘要:
为简化火焰传递函数建模过程,在实验数据的基础上,采用随机采样和优化方法对迟滞时间与增益的计算模型进行了研究。首先,建立了贫油预混预蒸发(LPP)模型燃烧室实验系统的低阶热声网络(LOTAN)模型;随后,在该LOTAN模型的基础上,基于实验数据,采用Sobol采样构建
n -τ 的取值空间,利用优化的方法获得了不同工况条件下的火焰传递函数模型参数;最后,基于Kriging模型对n -τ 进行了重构。研究结果表明:基于该方法构建的火焰传递函数能够较准确地反映各工况下的非稳态热释放特征,代入LOTAN模型中预测得到的振荡频率与实验结果吻合得较好,最大误差不超过5%,同时,利用该方法预测的振荡燃烧临界油气比(FAR)与实验结果保持一致。Abstract:In order to simplify the modeling process of flame transfer function, the calculation model of delay time and gain was studied by using random sampling and optimization method based on the experimental data. Firstly, the low order thermoacoustic network (LOTAN) model of lean premixing prevaporizing (LPP) model combustor test system was established. Then, based on the LOTAN model and test data, Sobol sampling was used to construct the sampling space of
n -τ . Finally,n -τ was reconstructed based on the Kriging model. The results showed that the flame transfer function constructed based on this method can accurately express the unsteady heat release characteristics under various working conditions; if being substituted into LOTAN, the predicted results of oscillation frequency were in good agreement with the experimental results, the maximum error did not exceed 5%, at the same time, the critical fuel air ratio (FAR) predicted by this method was consistent with the experimental results. -
表 1 进口温度对自激振荡主频的影响
Table 1. Effects of inlet temperature on main frequency of self-excited oscillation
工况 温度/K 油气比 振荡频率/Hz A1 345 0.036 115 A2 0.041 140 A3 0.045 142 B1 369 0.035 108 B2 0.039 120 B3 0.043 146 B4 0.045 149 C1 383 0.036 120 C2 0.04 146 C3 0.044 148 C4 0.047 148 D1 402 0.034 123 D2 0.039 148 D3 0.045 157 E1 423 0.032 125 E2 0.037 132 E3 0.041 150 E4 0.045 158 -
[1] LIEUWEN T C, YANG V. Combustion instabilities in gas turbine engines: operational experience, fundamental mechanisms, and modeling (progress in astronautics and aeronautics)[M]. Reston, US: American Institute of Aeronautics and Astronautics, 2005. [2] 张澄宇. 航空发动机加力燃烧室不稳定燃烧机理与控制方法研究[D]. 北京: 北京航空航天大学, 2010.ZHANG Chengyu. The mechanism and control for combustion instabilities of aeroengine afterburner[D]. Beijing: Beihang University, 2010. (in Chinese) [3] NAKAYA S,YAMANA H,TSUE M. Experimental investigation of ethylene/air combustion instability in a model scramjet combustor using image-based methods[J]. Proceedings of the Combustion Institute,2021,38(3): 3869-3880. doi: 10.1016/j.proci.2020.07.129 [4] CHENG Yuzhou,JIN Tai,LUO Kun,et al. Large eddy simulations of spray combustion instability in an aero-engine combustor at elevated temperature and pressure[J]. Aerospace Science and Technology,2021,108: 106329. doi: 10.1016/j.ast.2020.106329 [5] PENG Jiangbo,CAO Zhen,YU Xin,et al. Analysis of combustion instability of hydrogen fueled scramjet combustor on high-speed OH-PLIF measurements and dynamic mode decomposition[J]. International Journal of Hydrogen Energy,2020,45(23): 13108-13118. doi: 10.1016/j.ijhydene.2020.02.216 [6] RAYLEIGH J W S, LINDSAY R B. The theory of sound[M]. New York, US: Dover Publications, 1945 [7] POLIFKE W. Low-order analysis tools for aero- and thermo-acoustic instabilities[M]//SCHRAM C. Advances in aero-acoustics and thermo-acoustics. Rhode-St-Genèse, Belgium: Van Karman Institute for Fluid Dynamics, 2010. [8] NICOUD F,BENOIT L,SENSIAU C,et al. Acoustic modes in combustors with complex impedances and multidimensional active flames[J]. AIAA Journal,2007,45(2): 426-441. doi: 10.2514/1.24933 [9] SILVA C F,NICOUD F,SCHULLER T,et al. Combining a Helmholtz solver with the flame describing function to assess combustion instability in a premixed swirled combustor[J]. Combustion and Flame,2013,160(9): 1743-1754. doi: 10.1016/j.combustflame.2013.03.020 [10] NI F,NICOUD F,MÉRY Y,et al. Including flow-acoustic interactions in the Helmholtz computations of industrial combustors[J]. AIAA Journal,2018,56(12): 4815-4829. doi: 10.2514/1.J057093 [11] JUNIPER M P. Triggering in the horizontal Rijke tube: non-normality, transient growth and bypass transition[J]. Journal of Fluid Mechanics,2011,667: 272-308. doi: 10.1017/S0022112010004453 [12] STOW S R,DOWLING A P. A time-domain network model for nonlinear thermoacoustic oscillations[J]. Journal of Engineering for Gas Turbines and Power,2009,131(3): 031502. doi: 10.1115/1.2981178 [13] BELLUCCI V,SCHUERMANS B,NOWAK D,et al. Thermoacoustic modeling of a gas turbine combustor equipped with acoustic dampers[J]. Journal of Turbomachinery,2005,127(2): 372-379. doi: 10.1115/1.1791284 [14] YANG Dong,LAERA D,MORGANS A S. A systematic study of nonlinear coupling of thermoacoustic modes in annular combustors[J]. Journal of Sound and Vibration,2019,456: 137-161. doi: 10.1016/j.jsv.2019.04.025 [15] LI Jingxuan,MORGANS A S. Time domain simulations of nonlinear thermoacoustic behaviour in a simple combustor using a wave-based approach[J]. Journal of Sound and Vibration,2015,346: 345-360. doi: 10.1016/j.jsv.2015.01.032 [16] VON SALDERN J G R,ORCHINI A,MOECK J P. Analysis of thermoacoustic modes in can-annular combustors using effective bloch-type boundary conditions[J]. Journal of Engineering for Gas Turbines and Power,2021,143(7): 071019. doi: 10.1115/1.4049162 [17] LI Jingxuan, YANG Dong, LUZZATO C, et al. Open source combustion instability low order simulator (OSCILOS Long)[R]. London, UK: Imperial College London, 2015. [18] STOW S R, DOWLING A P. Low-order modelling of thermoacoustic limit cycles[R]. GT2004-54245, 2004. [19] LAERA D,CAMPA G,CAMPOREALE S M,et al. Modelling of thermoacoustic combustion instabilities phenomena: application to an experimental test rig[J]. Energy Procedia,2014,45: 1392-1401. doi: 10.1016/j.egypro.2014.01.146 [20] 杨甫江,郭志辉,付虓. 基于热声网络法的燃烧不稳定性分析研究[J]. 推进技术,2014,35(6): 822-829. doi: 10.13675/j.cnki.tjjs.2014.06.015YANG Fujiang,GUO Zhihui,FU Xiao. Analytic study on combustion instability with a thermoacoustic network model[J]. Journal of Propulsion Technology,2014,35(6): 822-829. (in Chinese) doi: 10.13675/j.cnki.tjjs.2014.06.015 [21] CROCCO L. Aspects of combustion stability in liquid propellant rocket motors: Part Ⅱ low frequency instability with bipropellants. high frequency instability[J]. Journal of the American Rocket Society,1952,22(1): 7-16. doi: 10.2514/8.4410 [22] FLEIFIL M,ANNASWAMY A M,GHONEIM Z A,et al. Response of a laminar premixed flame to flow oscillations: a kinematic model and thermoacoustic instability results[J]. Combustion and Flame,1996,106(4): 487-510. doi: 10.1016/0010-2180(96)00049-1 [23] BELLOWS B D,BOBBA M K,FORTE A,et al. Flame transfer function saturation mechanisms in a swirl-stabilized combustor[J]. Proceedings of the Combustion Institute,2007,31(2): 3181-3188. doi: 10.1016/j.proci.2006.07.138 [24] LIU Weijie,ZHANG Liang,XUE Ranran,et al. Experimental investigation on nonlinear response of a low-swirl flame to acoustic excitation with large amplitude[J]. Journal of Engineering for Gas Turbines and Power,2021,143(12): 121021. doi: 10.1115/1.4052024 [25] 翁方龙,周少伟,朱民. 基于描述函数的燃烧振荡建模与仿真[J]. 推进技术,2021,42(10): 2306-2314. doi: 10.13675/j.cnki.tjjs.190769WENG Fanglong,ZHOU Shaowei,ZHU Min. Modeling and simulation of combustion oscillations based on describing function method[J]. Journal of Propulsion Technology,2021,42(10): 2306-2314. (in Chinese) doi: 10.13675/j.cnki.tjjs.190769 [26] HAN Xingsi,MORGANS A S. Simulation of the flame describing function of a turbulent premixed flame using an open-source LES solver[J]. Combustion and Flame,2015,162(5): 1778-1792. doi: 10.1016/j.combustflame.2014.11.039 [27] HARRJE D T, REARDON F H. Liquid propellant rocket combustion instability[M]. Washington, US: Scientific and Technical Information Office, National Aeronautics and Space Administration, 1972. [28] LIU Yunpeng,LI Jinghua,HAN Q,et al. Study of combustion oscillation mechanism and flame image processing[J]. AIAA Journal,2019,57(2): 824-835. doi: 10.2514/1.J057614 [29] SILVA C F,DURÁN I,NICOUD F,et al. Boundary conditions for the computation of thermoacoustic modes in combustion chambers[J]. AIAA Journal,2014,52(6): 1180-1193. doi: 10.2514/1.J052114 [30] GENTLE J E. Random number generation and Monte Carlo methods[M]. 2nd ed. New York, US: Springer-Verlag, 2003. [31] SOBOL I M. On the distribution of points in a cube and the approximate evaluation of integrals[J]. USSR Computational Mathematics and Mathematical Physics,1967,7(4): 86-112. doi: 10.1016/0041-5553(67)90144-9 [32] BAE J,JEONG S,YOON Y. Effect of delay time on the combustion instability in a single-element combustor[J]. Acta Astronautica,2021,178: 783-792. doi: 10.1016/j.actaastro.2020.10.004 [33] 樊未军, 杨建辉, 杨茂林. 燃烧室进气温度对头部喷雾场的影响[C]//第五届动力年会论文集(5~8). 北京: 中国航空学会动力专业分会, 2003: 111-114.FAN Weijun, YANG Jianhui, YANG Maolin. Influence of inlet temperature of combustion chamber on head spray field[C]//Proceedings of the 5th Annual Power Conference (5—8). Beijing: Centennial Aviation Academic Forum of China Aeronautical Society Power Credit Forum, 2003: 111-114. (in Chinese) [34] BERNIER D,LACAS F,CANDEL S. Instability mechanisms in a premixed prevaporized combustor[J]. Journal of Propulsion and Power,2004,20(4): 648-656. doi: 10.2514/1.11461 [35] LIEUWEN T,ZINN B T. The role of equivalence ratio oscillations in driving combustion instabilities in low NOx gas turbines[J]. Symposium (International) on Combustion,1998,27(2): 1809-1816. doi: 10.1016/S0082-0784(98)80022-2 [36] 曾威,丘文生,宋红,等. 基于Kriging插值的钢轨打磨温度预测[J]. 铁道科学与工程学报,2018,15(6): 1559-1566. doi: 10.3969/j.issn.1672-7029.2018.06.026ZENG Wei,QIU Wensheng,SONG Hong,et al. Prediction of rail grinding temperature based on Kriging interpolation[J]. Journal of Railway Science and Engineering,2018,15(6): 1559-1566. (in Chinese) doi: 10.3969/j.issn.1672-7029.2018.06.026 [37] 秦鹏霄. 基于Kriging模型的铁路棚架结构失效预测[J]. 计算机与现代化,2019(12): 6-9. doi: 10.3969/j.issn.1006-2475.2019.12.002QIN Pengxiao. Failure prediction of railway scaffolding structure based on kriging model[J]. Computer and Modernization,2019(12): 6-9. (in Chinese) doi: 10.3969/j.issn.1006-2475.2019.12.002 [38] 石循磊,张继文,刘顺涛,等. 基于Kriging模型插值的孔位修正策略[J]. 航空学报,2020,41(9): 423499.SHI Xunlei,ZHANG Jiwen,LIU Shuntao,et al. Correction strategy for hole positions based on Kriging interpolation[J]. Acta Aeronautica et Astronautica Sinica,2020,41(9): 423499. (in Chinese) -