留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于实验数据的燃烧室火焰传递函数优化方法

杨晨 刘勇 张祥 李昊 金峰 刘重阳

杨晨, 刘勇, 张祥, 等. 基于实验数据的燃烧室火焰传递函数优化方法[J]. 航空动力学报, 2024, 39(2):20220157 doi: 10.13224/j.cnki.jasp.20220157
引用本文: 杨晨, 刘勇, 张祥, 等. 基于实验数据的燃烧室火焰传递函数优化方法[J]. 航空动力学报, 2024, 39(2):20220157 doi: 10.13224/j.cnki.jasp.20220157
YANG Chen, LIU Yong, ZHANG Xiang, et al. Optimization method on flame transfer function of combustor based on experimental data[J]. Journal of Aerospace Power, 2024, 39(2):20220157 doi: 10.13224/j.cnki.jasp.20220157
Citation: YANG Chen, LIU Yong, ZHANG Xiang, et al. Optimization method on flame transfer function of combustor based on experimental data[J]. Journal of Aerospace Power, 2024, 39(2):20220157 doi: 10.13224/j.cnki.jasp.20220157

基于实验数据的燃烧室火焰传递函数优化方法

doi: 10.13224/j.cnki.jasp.20220157
基金项目: 中国航发集团产学研项目(HFZL2018CXY012)
详细信息
    作者简介:

    杨晨(1999-),男,硕士生,主要从事不稳定燃烧研究

  • 中图分类号: V231.2;TK16

Optimization method on flame transfer function of combustor based on experimental data

  • 摘要:

    为简化火焰传递函数建模过程,在实验数据的基础上,采用随机采样和优化方法对迟滞时间与增益的计算模型进行了研究。首先,建立了贫油预混预蒸发(LPP)模型燃烧室实验系统的低阶热声网络(LOTAN)模型;随后,在该LOTAN模型的基础上,基于实验数据,采用Sobol采样构建n-τ的取值空间,利用优化的方法获得了不同工况条件下的火焰传递函数模型参数;最后,基于Kriging模型对n-τ进行了重构。研究结果表明:基于该方法构建的火焰传递函数能够较准确地反映各工况下的非稳态热释放特征,代入LOTAN模型中预测得到的振荡频率与实验结果吻合得较好,最大误差不超过5%,同时,利用该方法预测的振荡燃烧临界油气比(FAR)与实验结果保持一致。

     

  • 图 1  火焰传递函数(FTF)示意图

    Figure 1.  Schematic diagram of flame transfer function (FTF)

    图 2  LPP不稳定燃烧实验系统示意图

    Figure 2.  LPP combustion instability experimental system

    图 3  LPP燃烧不稳定实验系统热声网络模型(单位:mm)

    Figure 3.  Thermoacoustic network model of LPP combustion instability experimental system (unit: mm)

    图 4  不同试算样本数量下的最优模态与目标模态间的D

    Figure 4.  Value of D between the optimal mode and the target mode under different trial sample numbers

    图 5  不同温度和油气比下nτ的最优解

    Figure 5.  n and τ obtained by optimization under different temperatures and fuel-air ratios

    图 6  各工况下的τ/T

    Figure 6.  τ/T under various working conditions

    图 7  nτ的Kriging模型

    Figure 7.  Kriging model of n and τ

    图 8  LOTAN预测结果与实验测量值对比

    Figure 8.  Comparison between predicted results by LOTAN and experimental measurements

    图 9  预测结果与实验结果的相对误差

    Figure 9.  Relative error between prediction results and experimental results

    图 10  不同油气比下nτ的预测情况

    Figure 10.  Prediction of n and τ under different fuel-air ratios

    图 11  增长率随油气比变化情况

    Figure 11.  Growth rate varies with fuel-air ratio

    表  1  进口温度对自激振荡主频的影响

    Table  1.   Effects of inlet temperature on main frequency of self-excited oscillation

    工况温度/K油气比振荡频率/Hz
    A13450.036115
    A20.041140
    A30.045142
    B13690.035108
    B20.039120
    B30.043146
    B40.045149
    C13830.036120
    C20.04146
    C30.044148
    C40.047148
    D14020.034123
    D20.039148
    D30.045157
    E14230.032125
    E20.037132
    E30.041150
    E40.045158
    下载: 导出CSV
  • [1] LIEUWEN T C, YANG V. Combustion instabilities in gas turbine engines: operational experience, fundamental mechanisms, and modeling (progress in astronautics and aeronautics)[M]. Reston, US: American Institute of Aeronautics and Astronautics, 2005.
    [2] 张澄宇. 航空发动机加力燃烧室不稳定燃烧机理与控制方法研究[D]. 北京: 北京航空航天大学, 2010.

    ZHANG Chengyu. The mechanism and control for combustion instabilities of aeroengine afterburner[D]. Beijing: Beihang University, 2010. (in Chinese)
    [3] NAKAYA S,YAMANA H,TSUE M. Experimental investigation of ethylene/air combustion instability in a model scramjet combustor using image-based methods[J]. Proceedings of the Combustion Institute,2021,38(3): 3869-3880. doi: 10.1016/j.proci.2020.07.129
    [4] CHENG Yuzhou,JIN Tai,LUO Kun,et al. Large eddy simulations of spray combustion instability in an aero-engine combustor at elevated temperature and pressure[J]. Aerospace Science and Technology,2021,108: 106329. doi: 10.1016/j.ast.2020.106329
    [5] PENG Jiangbo,CAO Zhen,YU Xin,et al. Analysis of combustion instability of hydrogen fueled scramjet combustor on high-speed OH-PLIF measurements and dynamic mode decomposition[J]. International Journal of Hydrogen Energy,2020,45(23): 13108-13118. doi: 10.1016/j.ijhydene.2020.02.216
    [6] RAYLEIGH J W S, LINDSAY R B. The theory of sound[M]. New York, US: Dover Publications, 1945
    [7] POLIFKE W. Low-order analysis tools for aero- and thermo-acoustic instabilities[M]//SCHRAM C. Advances in aero-acoustics and thermo-acoustics. Rhode-St-Genèse, Belgium: Van Karman Institute for Fluid Dynamics, 2010.
    [8] NICOUD F,BENOIT L,SENSIAU C,et al. Acoustic modes in combustors with complex impedances and multidimensional active flames[J]. AIAA Journal,2007,45(2): 426-441. doi: 10.2514/1.24933
    [9] SILVA C F,NICOUD F,SCHULLER T,et al. Combining a Helmholtz solver with the flame describing function to assess combustion instability in a premixed swirled combustor[J]. Combustion and Flame,2013,160(9): 1743-1754. doi: 10.1016/j.combustflame.2013.03.020
    [10] NI F,NICOUD F,MÉRY Y,et al. Including flow-acoustic interactions in the Helmholtz computations of industrial combustors[J]. AIAA Journal,2018,56(12): 4815-4829. doi: 10.2514/1.J057093
    [11] JUNIPER M P. Triggering in the horizontal Rijke tube: non-normality, transient growth and bypass transition[J]. Journal of Fluid Mechanics,2011,667: 272-308. doi: 10.1017/S0022112010004453
    [12] STOW S R,DOWLING A P. A time-domain network model for nonlinear thermoacoustic oscillations[J]. Journal of Engineering for Gas Turbines and Power,2009,131(3): 031502. doi: 10.1115/1.2981178
    [13] BELLUCCI V,SCHUERMANS B,NOWAK D,et al. Thermoacoustic modeling of a gas turbine combustor equipped with acoustic dampers[J]. Journal of Turbomachinery,2005,127(2): 372-379. doi: 10.1115/1.1791284
    [14] YANG Dong,LAERA D,MORGANS A S. A systematic study of nonlinear coupling of thermoacoustic modes in annular combustors[J]. Journal of Sound and Vibration,2019,456: 137-161. doi: 10.1016/j.jsv.2019.04.025
    [15] LI Jingxuan,MORGANS A S. Time domain simulations of nonlinear thermoacoustic behaviour in a simple combustor using a wave-based approach[J]. Journal of Sound and Vibration,2015,346: 345-360. doi: 10.1016/j.jsv.2015.01.032
    [16] VON SALDERN J G R,ORCHINI A,MOECK J P. Analysis of thermoacoustic modes in can-annular combustors using effective bloch-type boundary conditions[J]. Journal of Engineering for Gas Turbines and Power,2021,143(7): 071019. doi: 10.1115/1.4049162
    [17] LI Jingxuan, YANG Dong, LUZZATO C, et al. Open source combustion instability low order simulator (OSCILOS Long)[R]. London, UK: Imperial College London, 2015.
    [18] STOW S R, DOWLING A P. Low-order modelling of thermoacoustic limit cycles[R]. GT2004-54245, 2004.
    [19] LAERA D,CAMPA G,CAMPOREALE S M,et al. Modelling of thermoacoustic combustion instabilities phenomena: application to an experimental test rig[J]. Energy Procedia,2014,45: 1392-1401. doi: 10.1016/j.egypro.2014.01.146
    [20] 杨甫江,郭志辉,付虓. 基于热声网络法的燃烧不稳定性分析研究[J]. 推进技术,2014,35(6): 822-829. doi: 10.13675/j.cnki.tjjs.2014.06.015

    YANG Fujiang,GUO Zhihui,FU Xiao. Analytic study on combustion instability with a thermoacoustic network model[J]. Journal of Propulsion Technology,2014,35(6): 822-829. (in Chinese) doi: 10.13675/j.cnki.tjjs.2014.06.015
    [21] CROCCO L. Aspects of combustion stability in liquid propellant rocket motors: Part Ⅱ low frequency instability with bipropellants. high frequency instability[J]. Journal of the American Rocket Society,1952,22(1): 7-16. doi: 10.2514/8.4410
    [22] FLEIFIL M,ANNASWAMY A M,GHONEIM Z A,et al. Response of a laminar premixed flame to flow oscillations: a kinematic model and thermoacoustic instability results[J]. Combustion and Flame,1996,106(4): 487-510. doi: 10.1016/0010-2180(96)00049-1
    [23] BELLOWS B D,BOBBA M K,FORTE A,et al. Flame transfer function saturation mechanisms in a swirl-stabilized combustor[J]. Proceedings of the Combustion Institute,2007,31(2): 3181-3188. doi: 10.1016/j.proci.2006.07.138
    [24] LIU Weijie,ZHANG Liang,XUE Ranran,et al. Experimental investigation on nonlinear response of a low-swirl flame to acoustic excitation with large amplitude[J]. Journal of Engineering for Gas Turbines and Power,2021,143(12): 121021. doi: 10.1115/1.4052024
    [25] 翁方龙,周少伟,朱民. 基于描述函数的燃烧振荡建模与仿真[J]. 推进技术,2021,42(10): 2306-2314. doi: 10.13675/j.cnki.tjjs.190769

    WENG Fanglong,ZHOU Shaowei,ZHU Min. Modeling and simulation of combustion oscillations based on describing function method[J]. Journal of Propulsion Technology,2021,42(10): 2306-2314. (in Chinese) doi: 10.13675/j.cnki.tjjs.190769
    [26] HAN Xingsi,MORGANS A S. Simulation of the flame describing function of a turbulent premixed flame using an open-source LES solver[J]. Combustion and Flame,2015,162(5): 1778-1792. doi: 10.1016/j.combustflame.2014.11.039
    [27] HARRJE D T, REARDON F H. Liquid propellant rocket combustion instability[M]. Washington, US: Scientific and Technical Information Office, National Aeronautics and Space Administration, 1972.
    [28] LIU Yunpeng,LI Jinghua,HAN Q,et al. Study of combustion oscillation mechanism and flame image processing[J]. AIAA Journal,2019,57(2): 824-835. doi: 10.2514/1.J057614
    [29] SILVA C F,DURÁN I,NICOUD F,et al. Boundary conditions for the computation of thermoacoustic modes in combustion chambers[J]. AIAA Journal,2014,52(6): 1180-1193. doi: 10.2514/1.J052114
    [30] GENTLE J E. Random number generation and Monte Carlo methods[M]. 2nd ed. New York, US: Springer-Verlag, 2003.
    [31] SOBOL I M. On the distribution of points in a cube and the approximate evaluation of integrals[J]. USSR Computational Mathematics and Mathematical Physics,1967,7(4): 86-112. doi: 10.1016/0041-5553(67)90144-9
    [32] BAE J,JEONG S,YOON Y. Effect of delay time on the combustion instability in a single-element combustor[J]. Acta Astronautica,2021,178: 783-792. doi: 10.1016/j.actaastro.2020.10.004
    [33] 樊未军, 杨建辉, 杨茂林. 燃烧室进气温度对头部喷雾场的影响[C]//第五届动力年会论文集(5~8). 北京: 中国航空学会动力专业分会, 2003: 111-114.

    FAN Weijun, YANG Jianhui, YANG Maolin. Influence of inlet temperature of combustion chamber on head spray field[C]//Proceedings of the 5th Annual Power Conference (5—8). Beijing: Centennial Aviation Academic Forum of China Aeronautical Society Power Credit Forum, 2003: 111-114. (in Chinese)
    [34] BERNIER D,LACAS F,CANDEL S. Instability mechanisms in a premixed prevaporized combustor[J]. Journal of Propulsion and Power,2004,20(4): 648-656. doi: 10.2514/1.11461
    [35] LIEUWEN T,ZINN B T. The role of equivalence ratio oscillations in driving combustion instabilities in low NOx gas turbines[J]. Symposium (International) on Combustion,1998,27(2): 1809-1816. doi: 10.1016/S0082-0784(98)80022-2
    [36] 曾威,丘文生,宋红,等. 基于Kriging插值的钢轨打磨温度预测[J]. 铁道科学与工程学报,2018,15(6): 1559-1566. doi: 10.3969/j.issn.1672-7029.2018.06.026

    ZENG Wei,QIU Wensheng,SONG Hong,et al. Prediction of rail grinding temperature based on Kriging interpolation[J]. Journal of Railway Science and Engineering,2018,15(6): 1559-1566. (in Chinese) doi: 10.3969/j.issn.1672-7029.2018.06.026
    [37] 秦鹏霄. 基于Kriging模型的铁路棚架结构失效预测[J]. 计算机与现代化,2019(12): 6-9. doi: 10.3969/j.issn.1006-2475.2019.12.002

    QIN Pengxiao. Failure prediction of railway scaffolding structure based on kriging model[J]. Computer and Modernization,2019(12): 6-9. (in Chinese) doi: 10.3969/j.issn.1006-2475.2019.12.002
    [38] 石循磊,张继文,刘顺涛,等. 基于Kriging模型插值的孔位修正策略[J]. 航空学报,2020,41(9): 423499.

    SHI Xunlei,ZHANG Jiwen,LIU Shuntao,et al. Correction strategy for hole positions based on Kriging interpolation[J]. Acta Aeronautica et Astronautica Sinica,2020,41(9): 423499. (in Chinese)
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  21
  • HTML浏览量:  5
  • PDF量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-27
  • 网络出版日期:  2023-10-19

目录

    /

    返回文章
    返回