留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

孔间非均匀应力影响下的带孔薄板破坏行为

石多奇 张恒斌 李振磊 董成利 杨晓光

石多奇, 张恒斌, 李振磊, 等. 孔间非均匀应力影响下的带孔薄板破坏行为[J]. 航空动力学报, 2022, 37(11):2353-2361 doi: 10.13224/j.cnki.jasp.20220190
引用本文: 石多奇, 张恒斌, 李振磊, 等. 孔间非均匀应力影响下的带孔薄板破坏行为[J]. 航空动力学报, 2022, 37(11):2353-2361 doi: 10.13224/j.cnki.jasp.20220190
SHI Duoqi, ZHANG Hengbin, LI Zhenlei, et al. Effect of nonuniform stress between holes on failure behavior of thin plate with holes[J]. Journal of Aerospace Power, 2022, 37(11):2353-2361 doi: 10.13224/j.cnki.jasp.20220190
Citation: SHI Duoqi, ZHANG Hengbin, LI Zhenlei, et al. Effect of nonuniform stress between holes on failure behavior of thin plate with holes[J]. Journal of Aerospace Power, 2022, 37(11):2353-2361 doi: 10.13224/j.cnki.jasp.20220190

孔间非均匀应力影响下的带孔薄板破坏行为

doi: 10.13224/j.cnki.jasp.20220190
基金项目: 国家科技重大专项(J2019-Ⅵ-0008-0122); 国家自然科学基金(52105137); 国家科技重大专项(J2019-Ⅳ-0017-0085)
详细信息
    作者简介:

    石多奇(1975-),男,教授、博士生导师,博士,主要从事航空发动机结构强度和寿命可靠性、高温材料力学行为与本构理论等研究

    通讯作者:

    李振磊(1988-),男,副研究员,博士,主要从事发动机结构强度的研究。E-mail:lizhl@buaa.edu.cn

  • 中图分类号: V232.1

Effect of nonuniform stress between holes on failure behavior of thin plate with holes

  • 摘要:

    针对燃气涡轮发动机中带密布孔薄壁结构特征引起的疲劳-蠕变开裂问题,设计了带单孔、双孔的DZ125薄壁平板试样,开展了850 ℃、应力比为0.1的高温疲劳-蠕变试验研究。基于双孔薄板的弹塑性有限元分析结果,确定两孔之间的应力最大路径为关键区域,定义了描述多孔平板复杂应力状态的孔间等效应力。有限元分析和试验结果表明:孔间非均匀应力是决定多孔平板循环寿命的关键因素,循环寿命随孔间等效应力的增加而减小;沿加载方向的拉伸应力是带孔薄板疲劳-蠕变破坏的主导应力,裂纹起源于边缘孔高应力区。距径比在临界值4.22左右,等效应力变化较大,在设计时应将距径比控制在该临界值以上。

     

  • 图 1  试样类型及尺寸(单位:mm)

    Figure 1.  Types and geometric dimensions of specimens (unit:mm)

    图 2  带孔平板550 MPa含孔截面名义应力下的拉伸应力云图

    Figure 2.  Tensile stress distribution of flat specimen under nominal stress of 550 MPa

    图 3  近似无限大带双孔平板100 MPa含孔截面名义应力下的拉伸应力云图

    Figure 3.  Tensile stress distribution of approximately infinite double-holes plate under nominal stress of 100 MPa

    图 4  最大应力路径定义

    Figure 4.  Definition of maximum stress path

    图 5  孔间应力分布规律

    Figure 5.  Stress distribution between holes

    图 6  带双孔平板的孔间等效应力及理论应力集中因子随RDD的变化规律

    Figure 6.  Law of equivalent stress between holes and stress concentration factor of double-holes flat plate with RDD

    图 7  归一化孔间等效应力与归一化Kt分布

    Figure 7.  Comparison of normalized equivalent stress between holes and normalized Kt of double-holes flat plate

    图 8  断裂试样图

    Figure 8.  Pictures of fracture samples

    图 9  各试样疲劳-蠕变循环寿命结果

    Figure 9.  Comparison of creep-fatigue cycle life of each sample

    图 10  带单孔平板试样在550 MPa名义应力、120 s保载时间条件下的断口及断后侧面形貌

    Figure 10.  Fracture morphology and side morphology of single-hole plate under 550 MPa nominal stress and 120 s holding times

    图 11  带双孔平板试样(RDD=2)在550 MPa名义应力、120 s保载时间条件下的断口及断后侧面形貌

    Figure 11.  Fracture morphology and side morphology of double-holes plate (RDD=2) under 550 MPa nominal stress and 120 s times

    表  1  试验矩阵

    Table  1.   Test matrix

    类型编号R${\sigma _{ {\text{nom} } }/ }$
    MPa
    保载时间/s
    单孔板S0-10.145030
    S0-255030
    S0-355060
    S0-4550120
    双孔板
    RDD =2)
    D2-10.145030
    D2-255030
    D2-355060
    D2-4550120
    双孔板
    RDD =3)
    D3-10.155030
    D3-255060
    D3-3550120
    下载: 导出CSV

    表  2  试样有限元模型网格和单元数

    Table  2.   Mesh attribute parameters of the finite element model of each sample

    试样类型单元数节点数
    单孔板142052154656
    双孔板 (RDD=2)5152059081
    双孔板 (RDD=3)5250061226
    下载: 导出CSV

    表  3  两距径比带双孔板试验结果对比

    Table  3.   Comparison of two-diameter ratio double-hole flat plate

    RDD循环寿命(${\sigma _{{\text{nom}}}}$=550 MPa)Kt${\sigma _{ {{\rm{equ}}} } }$/MPa
    t=30 st=60 st=120 s
    210894003622.500777.4
    3152610575802.502619.4
    下载: 导出CSV
  • [1] HE K. Investigations of film cooling and heat transfer on a turbine blade squealer tip[J]. Applied Thermal Engineering,2017,110: 630-647. doi: 10.1016/j.applthermaleng.2016.08.173
    [2] SANJAY M K S. Investigation of the effect of air film blade cooling on thermoeconomics of gas turbine based power plant cycle[J]. ENERGY,2016,115: 1320-1330. doi: 10.1016/j.energy.2016.09.069
    [3] WANG Jiapo,LIANG Jianwei,WEN Zhixun,et al. The inter-hole interference on creep deformation behavior of nickel-based single crystal specimen with film-cooling holes[J]. International Journal of Mechanical Sciences,2019,163: 105090.1-105090.12.
    [4] 岳彦芳,饶寿期. DZ22多孔板蠕变有限元与试验研究[J]. 航空动力学报,1993,8(4): 383-386,420. doi: 10.13224/j.cnki.jasp.1993.04.017

    YUE Yanfang,RAO Shouqi. Finite element analysis and experiments on creep of multiholed plate DZ-22[J]. Journal of Aerospace Power,1993,8(4): 383-386,420. (in Chinese) doi: 10.13224/j.cnki.jasp.1993.04.017
    [5] 周天朋,杨晓光,候贵仓,等. DZ125带小孔构件低循环/保载疲劳试验与分析[J]. 航空动力学报,2007,22(9): 1526-1531. doi: 10.3969/j.issn.1000-8055.2007.09.021

    ZHOU Tianpeng,YANG Xiaoguang,HOU Guicang,et al. Experimental analysis of low-cycle and creep fatigue for directionally solidified DZ125 with a hole[J]. Journal of Aerospace Power,2007,22(9): 1526-1531. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.09.021
    [6] 周天朋,杨晓光,石多奇,等. DZ125光滑试样与小孔构件低循环/保载疲劳寿命建模[J]. 航空动力学报,2008,23(2): 276-280. doi: 10.13224/j.cnki.jasp.2008.02.016

    ZHOU Tianpeng,YANG Xiaoguang,SHI Duoqi,et al. Modeling of low-cycle and creep fatigue life for DZ125 smooth specimens and small-hole components[J]. Journal of Aerospace Power,2008,23(2): 276-280. (in Chinese) doi: 10.13224/j.cnki.jasp.2008.02.016
    [7] YOKOYAMA T, SEKIHARA M. Fatigue life estimation method considering inelastic behavior of Ni-based directionally solidified superalloy with multiple holes[C]// Turbo Expo: Power for Land, Sea, and Air. Copenhagen, Denmark: University of Copenhagen, 2012: 293-300.
    [8] WATANABE O,KOIKE T. Creep-fatigue life evaluation method for perforated plates at elevated temperature[J]. Journal of Pressure Vessel Technology,2006,128(1): 17-24. doi: 10.1115/1.2137766
    [9] 艾兴,高行山,温志勋,等. DD6镍基单晶合金气膜孔薄壁平板高温蠕变性能[J]. 航空动力学报,2014,29(5): 1197-1204. doi: 10.13224/j.cnki.jasp.2014.05.028

    AI Xing,GAO Xingshan,WEN Zhixun,et al. Creep behavior of thin-walled plate with cooling holes of nickel-based single crystal superalloy DD6 under high temperature[J]. Journal of Aerospace Power,2014,29(5): 1197-1204. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.05.028
    [10] 卢绪平, 温志勋, 岳珠峰, 等. 镍基单晶气膜孔模拟试样的低周疲劳断裂机理[J]. 稀有金属材料与工程. 2015, 44(5): 1173-1176.

    LU Xuping, WEN Zhixun, YUE Zhufeng, et al. Low cycle fatigue fracture mechanism of a modeling specimen with cooling film hole of dd6 single crystal superalloy[J]. Rare Metal Materials and Engineering, 2015, 44(5): 1173-1176. (in Chinese)
    [11] ZHANG Y,WEN Z,PEI H,et al. Microstructure evolution mechanisms in nickel-based single crystal superalloys under multiaxial stress state[J]. Journal of Alloys and Compounds,2019,797: 1059-1077. doi: 10.1016/j.jallcom.2019.05.143
    [12] LIANG Jianwei,AI Xing,WEN Zhixun,et al. Experimental investigation on low cycle fatigue of DZ125 with film cooling holes in different processes of laser drilling[J]. Engineering Failure Analysis,2015,59: 326-333.
    [13] 李磊, 侯乃先, 敖良波, 等. 不同孔间距下镍基单晶叶片气膜孔弹塑性行为研究[J]. 稀有金属材料与工程, 2013, 42(3): 519-523.

    LI Lei, HOU Naixian, AO Liangbo, et al. Crystallographic behavior of nickel base single crystal blades film cooling holes under different hole distances[J]. Rare Metal Materials and Engineering, 2013, 42(3): 519-523. (in Chinese)
    [14] 冉文燊,张亚新,赵静. 多孔受力平板孔间应力集中干涉效应的数值模拟分析[J]. 化学工程与装备,2014(12): 38-41.

    RAN Wenshen,ZHANG Yaxin,ZHAO Jing. Numerical simulation analysis of interference effect of stress concentration between porous force plates[J]. Fujian Chemical Industry,2014(12): 38-41. (in Chinese)
    [15] 胡广丰. 复杂冷却结构单晶涡轮叶片强度计算[D]. 北京: 北京航空航天大学, 2020.

    HU Guangfeng. Strength calculation of single crystal turbine blade with complex cooling structure[D]. Beijing: Beihang University, 2020. (in Chinese)
    [16] 何雨舒. 高温合金结构缺口疲劳行为及寿命预测[D]. 北京: 北京航空航天大学, 2021.

    HE Yushu. Notched fatigue behavior and life prediction of superalloy structures[D]. Beijing: Beihang University, 2021. (in Chinese)
    [17] VERSNYDER F I,SHANK M E. The development of columnar grain and single crystal high temperature materials through directional solidification[J]. Materials Science and Engineering,1970,6(4): 213-247. doi: 10.1016/0025-5416(70)90050-9
    [18] KERMANPUR A,VARAHRAAM N,ENGILEHEI E,et al. Directional solidification of Ni base superalloy IN738LC to improve creep properties[J]. Materials Science and Technology,2000,16(5): 579-586. doi: 10.1179/026708300101508117
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  274
  • HTML浏览量:  23
  • PDF量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-03
  • 网络出版日期:  2022-10-10

目录

    /

    返回文章
    返回