留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二次流控制规律的非轴对称端壁造型优化设计

尤付浩 李相君 鲁庆 崔义强 朱政宇

尤付浩, 李相君, 鲁庆, 等. 基于二次流控制规律的非轴对称端壁造型优化设计[J]. 航空动力学报, 2024, 39(2):20220215 doi: 10.13224/j.cnki.jasp.20220215
引用本文: 尤付浩, 李相君, 鲁庆, 等. 基于二次流控制规律的非轴对称端壁造型优化设计[J]. 航空动力学报, 2024, 39(2):20220215 doi: 10.13224/j.cnki.jasp.20220215
YOU Fuhao, LI Xiangjun, LU Qing, et al. Non-axisymmetric endwall based on secondary flow control law modeling optimization design[J]. Journal of Aerospace Power, 2024, 39(2):20220215 doi: 10.13224/j.cnki.jasp.20220215
Citation: YOU Fuhao, LI Xiangjun, LU Qing, et al. Non-axisymmetric endwall based on secondary flow control law modeling optimization design[J]. Journal of Aerospace Power, 2024, 39(2):20220215 doi: 10.13224/j.cnki.jasp.20220215

基于二次流控制规律的非轴对称端壁造型优化设计

doi: 10.13224/j.cnki.jasp.20220215
基金项目: 国家自然科学基金青年项目(51906027); 辽宁省博士科研启动基金计划项目(2019-BS-027)
详细信息
    作者简介:

    尤付浩(1995-),男,硕士生,主要从事叶轮机械气动热力学研究。E-mail:fhyou@dlmu.edu.cn

    通讯作者:

    李相君(1989-),男,副教授、硕士生导师,博士,主要从事叶轮机械气动热力学研究。E-mail:xjli@dlmu.edu.cn

  • 中图分类号: V231.3

Non-axisymmetric endwall based on secondary flow control law modeling optimization design

  • 摘要:

    针对高负荷轴流压气机端壁角区分离问题,提出了一种多局部控制端壁二次流、适用于多工况的端壁造型方法,在选取参数的同时考虑结合优化,通过少量参数来控制型面变化。该方法的思想是定义对端壁二次流有不同影响的表面单元,然后通过几何叠加的方式将它们的影响组合起来。而后将该方法应用到多目标优化设计中。优化结果表明:高负荷叶栅的总压损失系数在设计点降低0.03,大攻角点降低0.05时,与传统方法相比,新方法的优化设计过程收敛更快,计算时间更短。最优造型设计规律是在叶片通道内构造一个吸力侧上升、压力侧下沉的端壁面,同时局部抬高吸力面角区,前缘至凸起部位上坡平缓。流场分析表明,该方法在控制变量较少的情况下,对端壁几何形状产生了清晰直观的影响。同时有效结合表面单元在二次流控制中的作用,抑制角区分离。由此可见,新开发的端壁造型优化设计方法与以往的研究相比具有一定的优势。

     

  • 图 1  造型单元面的加权叠合

    Figure 1.  Weighted superposition of the end wall contouring units

    图 2  全局单元定义及流场作用情况

    Figure 2.  Definition of the full-area unit and its effects on the end wall flow field

    图 3  局部单元定义及流场作用情况

    Figure 3.  Definition of the localized unit and its effects on the end wall flow field

    图 4  不同权重下的标准空间内造型结果对比

    Figure 4.  Influence of the weight factor on the variation of the end wall contouring

    图 5  端壁造型由标准空间向压气机端壁空间映射

    Figure 5.  Mapping from the standard space to the end wall region of a compressor passage

    图 6  叶栅几何参数示意图

    Figure 6.  Parameters definition of the cascade diagram

    图 7  网格示意图

    Figure 7.  Sketch of mesh

    图 8  尾缘下游0.5C位置总压损失系数沿叶高分布

    Figure 8.  Spanwise distribution of ω at 0.5C downstream of the trailing edge

    图 9  实验与计算壁面静压系数分布对比

    Figure 9.  Experimental and CFD result comparison of the static pressure coefficient on the end wall surface

    图 10  优化设计流程

    Figure 10.  Processing of the optimization design

    图 11  造型变量与总压损失系数的相关性分析

    Figure 11.  Correlation analysis between control variables and total pressure loss

    图 12  造型结果的总压损失分布

    Figure 12.  Total pressure loss of profiling cases

    图 13  优化造型结果高度云图(Case2)

    Figure 13.  Height contours of the optimized model (Case2)

    图 14  尾缘下游0.5C处总压损失系数、轴向密流比与出口气流角分布

    Figure 14.  Spanwise distribution of total pressure loss coefficient,AVDR and out flow angles at 0.5C downstream of the TE

    图 15  损失源所在区域划分

    Figure 15.  Integral region of the loss sources

    图 16  应用非轴对称端壁造型前后总压损失增长速率沿轴向分布

    Figure 16.  Streamwise distribution of growth rate of total pressure loss before and after applying NEWC

    图 17  应用非轴对称端壁造型前后的三维流场

    Figure 17.  Three-dimensional flow field before and after applying the NEWC

    图 18  OP2应用非轴对称端壁造型前后三维流场比较(i = 4°)

    Figure 18.  Comparison of three-dimensional flow field before and after applying the NEWC at OP2 (i = 4°)

    图 19  OP1处应用非轴对称端壁造型前后三维流场比较(i = 0°)

    Figure 19.  Comparison of three-dimensional flow field before and after applying the NEWC at OP1 (i = 0°)

    图 20  OP3处应用非轴对称端壁造型前后三维流场比较(i = −2°)

    Figure 20.  Comparison of three-dimensional flow field before and after applying the NEWC at OP3 (i = −2°)

    表  1  原型叶栅几何参数与气动参数

    Table  1.   Geometry parameters and aerodynamic parameters of the original cascade

    参数数值
    叶高h/mm100
    弦长C/mm40
    轴向弦长Ca/mm36.2
    叶距s/mm20
    进口马赫数Ma0.6
    进口几何角β1k/(º)25
    出口几何角β2k/(º)80
    安装角γ/(º)64.85
    设计攻角i/(º)0
    下载: 导出CSV

    表  2  叶栅通道损失源分布

    Table  2.   Loss sources of the cascade

    i/(°)LLELbfLsuLsd$L_{S_{ {\rm{ke} } } }$Lsep
    00.07440.06310.04180.05660.00170.0968
    40.10650.07550.05610.08520.00250.1389
    −20.08530.06850.04660.04520.00110.0907
    下载: 导出CSV

    表  3  端壁造型对损失源作用

    Table  3.   Effect of NEWC on the loss sources

    i/(°)$({L_{ {\text{sep,Case2} } } }{ { - } }{L_{ {\text{sep,Baseline} } } })$/
    ${\displaystyle\sum L _{ {\text{Baseline} } } }$/%
    $({L_{ {\text{Case2} } } }{{ - } }{L_{ {\text{Baseline} } } })$/
    ${\displaystyle\sum L _{ {\text{Baseline} } } }$/%
    0−10.18−12.89
    4−13.01−16
    −2−6.38 −7.98
    下载: 导出CSV
  • [1] KOFF B L. Gas turbine technology evolution: a designers perspective[J]. Journal of Propulsion and Power, 2004, 20(4): 577-595.
    [2] LIU Baojie,AN Guangfeng,YU Xianjun,et al. Experimental investigation of the effect of rotor tip gaps on 3D separating flows inside the stator of a highly loaded compressor stage[J]. Experimental Thermal and Fluid Science,2016,75: 96-107.
    [3] FEI Teng, JI L, YI Weilin. Investigation of the dihedral angle effect on the boundary layer development using special-shaped expansion pipe[R]. ASME Paper GT2018-76383 , 2018.
    [4] TAYLOR J V,MILLER R J. Competing three-dimensional mechanisms in compressor flows[J]. Journal of Turbomachinery,2016,139(2): 021009.1-021009.11.
    [5] LEI V M,SPAKOVSZKY Z S,GREITZER E M. A criterion for axial compressor hub-corner stall[J]. Journal of Turbomachinery,2008,130(3): 1-10.
    [6] LI X,CHU W,ZHANG H. Investigation on relation between secondary flow and loss on a high loaded axial-flow compressor cascade[J]. Journal of Propulsion Technology,2014,7: 914-925.
    [7] ROSE M G. Non-axisymmetric endwall profiling in the HP NGV’s of an axial flow gas turbine[R]. ASME Paper 94-GT-249, 1994.
    [8] BRENNAN G,HARVEY N W,ROSE M G,et al. Improving the efficiency of the trent 500-HP turbine using nonaxisymmetric end walls: Part Ⅰ turbine design[J]. Journal of Turbomachinery,2003,125(3): 497-504. doi: 10.1115/1.1450766
    [9] HU Shuzhen,LU Xingen,ZHANG Hongwu,et al. Numerical investigation of a high-subsonic axial-flow compressor rotor with non-axisymmetric hub endwall[J]. Journal of Thermal Science,2010,19(1): 14-20. doi: 10.1007/s11630-010-0014-8
    [10] HARVEY N W. Some effects of non-axisymmetric end wall profiling on axial flow compressor aerodynamics: Part Ⅰ linear cascade investigation[R]. ASME Paper GT2008-50990, 2008.
    [11] MENG Tongtong,YANG Guang,ZHOU Ling,et al. Full blended blade and endwall design of a compressor cascade[J]. Chinese Journal of Aeronautics,2021,34(11): 79-93. doi: 10.1016/j.cja.2021.02.009
    [12] HARVEY N W, OFFORD T P. Some effects of non-axisymmetric end wall profiling on axial flow compressor aerodynamics: Part Ⅱ multi-stage HPC CFD study[R]. ASME Paper GT2008-50991, 2008.
    [13] REISING S, SCHIFFER H P. Non-axisymmetric end wall profiling in transonic compressors: Part Ⅰ improving the static pressure recovery at off-design conditions by sequential hub and shroud end wall profiling[R]. ASME Paper GT2009-59133, 2009.
    [14] REISING S, SCHIFFER H. Non-axisymmetric end wall profiling in transonic compressors: Part Ⅱ design study of a transonic compressor rotor using non-axisymmetric end walls optimization strategies and performance[R]. ASME Paper GT2009-59134, 2009.
    [15] LEPOT I, MENGISTU T, HIERNAUX S, et al. Highly loaded lpc blade and non axisymmetric hub profiling optimization for en-hanced efficiency and stability[R]. ASME Paper GT2011-46261, 2011.
    [16] DORFNER C, HERGT A, NICKE E, et al. Advanced nonaxisymmetric end wall contouring for axial compressors by generating an aerodynamic separator: Part Ⅰ principal cascade design and compressor application[J]. Journal of Turbomachinery, 2011, 133(2): 021026.1-021026.6.
    [17] HERGT A, DORFNER C, STEINERT W, et al. Advanced non-axisymmetric end wall contouring for axial compressors by generating an aerodynamic separator: Part Ⅱ experimental and numerical cascade investigation[J]. Journal of Turbomachinery, 2011, 133(2): 021027.1-021027.8.
    [18] REUTTER O, HEMMERT-POTTMANN S, HERGT A, et al. Endwall contouring and fillet design for reducing losses and homogenizing the outflow of a compressor cascade[R]. ASME Paper GT2014-25277, 2014.
    [19] VARPE M K, PRADDEP A M. Benefits of non-axisymmetric endwall contouring in a compressor cascade with a tip clearance[J]. Journal of Fluids Engineering, 2015, 137(5): 1-15.
    [20] LI X, CHU W, WU Y. Numerical investigation of inlet boundary layer skew in axial-flow compressor cascade and the corresponding non-axisymmetric end wall profiling[J]. Journal of Power and Energy, 2014, 228(6): 638-656.
    [21] LI Xiangjun,CHU Wuli,WU Yanhui,et al. Effective end wall profiling rules for a highly loaded compressor cascade[J]. Journal of Power and Energy,2016,230(6): 535-553. doi: 10.1177/0957650916649084
    [22] CHU Wuli, LI Xiangjun, WU Yanhui, et al. Reduction of end wall loss in axial compressor by using non-axisymmetric profiled end wall: a new design approach based on end wall velocity modification[J]. Aerospace Science and Technology, 2016, 55: 76-91.
    [23] LI X, DONG J, CHEN H, LU H. The control of corner separation with parametric suction side corner profiling on a high-load compressor cascade[J]. Aerospace, 2022, 9(3): 172-196.
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  65
  • HTML浏览量:  120
  • PDF量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-15
  • 网络出版日期:  2023-04-19

目录

    /

    返回文章
    返回