Non-axisymmetric endwall based on secondary flow control law modeling optimization design
-
摘要:
针对高负荷轴流压气机端壁角区分离问题,提出了一种多局部控制端壁二次流、适用于多工况的端壁造型方法,在选取参数的同时考虑结合优化,通过少量参数来控制型面变化。该方法的思想是定义对端壁二次流有不同影响的表面单元,然后通过几何叠加的方式将它们的影响组合起来。而后将该方法应用到多目标优化设计中。优化结果表明:高负荷叶栅的总压损失系数在设计点降低0.03,大攻角点降低0.05时,与传统方法相比,新方法的优化设计过程收敛更快,计算时间更短。最优造型设计规律是在叶片通道内构造一个吸力侧上升、压力侧下沉的端壁面,同时局部抬高吸力面角区,前缘至凸起部位上坡平缓。流场分析表明,该方法在控制变量较少的情况下,对端壁几何形状产生了清晰直观的影响。同时有效结合表面单元在二次流控制中的作用,抑制角区分离。由此可见,新开发的端壁造型优化设计方法与以往的研究相比具有一定的优势。
Abstract:To deal with corner separation in high-load axial compressors, a new endwall contouring method for controlling the endwall second flow in more than one local area, generating the geometry with fewer control variables, and adapting to multiple working conditions was proposed. According to the idea of the new method, surface units with different effects on endwall secondary flow were defined, then their effects were combined by superimposing their geometry. Then the method was applied to multi-objective optimization design, The optimization results showed that the total pressure loss coefficient of the high-load cascade was reduced by 0.03 at the design point and 0.05 at the increased incidence. Compared with the traditional method, the optimization design process of the new method converged faster and the calculation time was shorter. As per the most effective design rules, an endwall surface with the rising suction side and sinking pressure side in the blade channel was constructed while locally raising the suction surface corner with a gentle upstream slope. The flow field analysis showed the new method achieved a clear and intuitive influence on the endwall geometry with fewer control variables. Also, it effectively combined the functions of the surface units in secondary flow control to suppress the corner separation. It thus indicates the advantages of the newly developed endwall contouring method compared with previous studies.
-
Key words:
- corner separation /
- end wall contouring /
- flow control /
- optimization design /
- compressor
-
表 1 原型叶栅几何参数与气动参数
Table 1. Geometry parameters and aerodynamic parameters of the original cascade
参数 数值 叶高h/mm 100 弦长C/mm 40 轴向弦长Ca/mm 36.2 叶距s/mm 20 进口马赫数Ma 0.6 进口几何角β1k/(º) 25 出口几何角β2k/(º) 80 安装角γ/(º) 64.85 设计攻角i/(º) 0 表 2 叶栅通道损失源分布
Table 2. Loss sources of the cascade
i/(°) LLE Lbf Lsu Lsd $L_{S_{ {\rm{ke} } } }$ Lsep 0 0.0744 0.0631 0.0418 0.0566 0.0017 0.0968 4 0.1065 0.0755 0.0561 0.0852 0.0025 0.1389 −2 0.0853 0.0685 0.0466 0.0452 0.0011 0.0907 表 3 端壁造型对损失源作用
Table 3. Effect of NEWC on the loss sources
i/(°) $({L_{ {\text{sep,Case2} } } }{ { - } }{L_{ {\text{sep,Baseline} } } })$/
${\displaystyle\sum L _{ {\text{Baseline} } } }$/%$({L_{ {\text{Case2} } } }{{ - } }{L_{ {\text{Baseline} } } })$/
${\displaystyle\sum L _{ {\text{Baseline} } } }$/%0 −10.18 −12.89 4 −13.01 −16 −2 −6.38 −7.98 -
[1] KOFF B L. Gas turbine technology evolution: a designers perspective[J]. Journal of Propulsion and Power, 2004, 20(4): 577-595. [2] LIU Baojie,AN Guangfeng,YU Xianjun,et al. Experimental investigation of the effect of rotor tip gaps on 3D separating flows inside the stator of a highly loaded compressor stage[J]. Experimental Thermal and Fluid Science,2016,75: 96-107. [3] FEI Teng, JI L, YI Weilin. Investigation of the dihedral angle effect on the boundary layer development using special-shaped expansion pipe[R]. ASME Paper GT2018-76383 , 2018. [4] TAYLOR J V,MILLER R J. Competing three-dimensional mechanisms in compressor flows[J]. Journal of Turbomachinery,2016,139(2): 021009.1-021009.11. [5] LEI V M,SPAKOVSZKY Z S,GREITZER E M. A criterion for axial compressor hub-corner stall[J]. Journal of Turbomachinery,2008,130(3): 1-10. [6] LI X,CHU W,ZHANG H. Investigation on relation between secondary flow and loss on a high loaded axial-flow compressor cascade[J]. Journal of Propulsion Technology,2014,7: 914-925. [7] ROSE M G. Non-axisymmetric endwall profiling in the HP NGV’s of an axial flow gas turbine[R]. ASME Paper 94-GT-249, 1994. [8] BRENNAN G,HARVEY N W,ROSE M G,et al. Improving the efficiency of the trent 500-HP turbine using nonaxisymmetric end walls: Part Ⅰ turbine design[J]. Journal of Turbomachinery,2003,125(3): 497-504. doi: 10.1115/1.1450766 [9] HU Shuzhen,LU Xingen,ZHANG Hongwu,et al. Numerical investigation of a high-subsonic axial-flow compressor rotor with non-axisymmetric hub endwall[J]. Journal of Thermal Science,2010,19(1): 14-20. doi: 10.1007/s11630-010-0014-8 [10] HARVEY N W. Some effects of non-axisymmetric end wall profiling on axial flow compressor aerodynamics: Part Ⅰ linear cascade investigation[R]. ASME Paper GT2008-50990, 2008. [11] MENG Tongtong,YANG Guang,ZHOU Ling,et al. Full blended blade and endwall design of a compressor cascade[J]. Chinese Journal of Aeronautics,2021,34(11): 79-93. doi: 10.1016/j.cja.2021.02.009 [12] HARVEY N W, OFFORD T P. Some effects of non-axisymmetric end wall profiling on axial flow compressor aerodynamics: Part Ⅱ multi-stage HPC CFD study[R]. ASME Paper GT2008-50991, 2008. [13] REISING S, SCHIFFER H P. Non-axisymmetric end wall profiling in transonic compressors: Part Ⅰ improving the static pressure recovery at off-design conditions by sequential hub and shroud end wall profiling[R]. ASME Paper GT2009-59133, 2009. [14] REISING S, SCHIFFER H. Non-axisymmetric end wall profiling in transonic compressors: Part Ⅱ design study of a transonic compressor rotor using non-axisymmetric end walls optimization strategies and performance[R]. ASME Paper GT2009-59134, 2009. [15] LEPOT I, MENGISTU T, HIERNAUX S, et al. Highly loaded lpc blade and non axisymmetric hub profiling optimization for en-hanced efficiency and stability[R]. ASME Paper GT2011-46261, 2011. [16] DORFNER C, HERGT A, NICKE E, et al. Advanced nonaxisymmetric end wall contouring for axial compressors by generating an aerodynamic separator: Part Ⅰ principal cascade design and compressor application[J]. Journal of Turbomachinery, 2011, 133(2): 021026.1-021026.6. [17] HERGT A, DORFNER C, STEINERT W, et al. Advanced non-axisymmetric end wall contouring for axial compressors by generating an aerodynamic separator: Part Ⅱ experimental and numerical cascade investigation[J]. Journal of Turbomachinery, 2011, 133(2): 021027.1-021027.8. [18] REUTTER O, HEMMERT-POTTMANN S, HERGT A, et al. Endwall contouring and fillet design for reducing losses and homogenizing the outflow of a compressor cascade[R]. ASME Paper GT2014-25277, 2014. [19] VARPE M K, PRADDEP A M. Benefits of non-axisymmetric endwall contouring in a compressor cascade with a tip clearance[J]. Journal of Fluids Engineering, 2015, 137(5): 1-15. [20] LI X, CHU W, WU Y. Numerical investigation of inlet boundary layer skew in axial-flow compressor cascade and the corresponding non-axisymmetric end wall profiling[J]. Journal of Power and Energy, 2014, 228(6): 638-656. [21] LI Xiangjun,CHU Wuli,WU Yanhui,et al. Effective end wall profiling rules for a highly loaded compressor cascade[J]. Journal of Power and Energy,2016,230(6): 535-553. doi: 10.1177/0957650916649084 [22] CHU Wuli, LI Xiangjun, WU Yanhui, et al. Reduction of end wall loss in axial compressor by using non-axisymmetric profiled end wall: a new design approach based on end wall velocity modification[J]. Aerospace Science and Technology, 2016, 55: 76-91. [23] LI X, DONG J, CHEN H, LU H. The control of corner separation with parametric suction side corner profiling on a high-load compressor cascade[J]. Aerospace, 2022, 9(3): 172-196. -