Numerical study on the generation mechanism of temperature variation effect of static labyrinth seals
-
摘要:
采用理论分析和数值计算的方法系统地研究了静态篦齿封严温变效应产生机理和影响因素,对静态篦齿封严温变效应进行了理论分析,建立了基于RNG(renormalization group)
k -ε 湍流方程的数值求解模型。研究了静态篦齿封严温变效应,分析了压比和相对封严间隙对温变效应的影响规律,揭示了静态篦齿封严温变效应产生机理。结果表明:气体流经封严间隙温度先降低后升高,从涡流中心到外缘温度升高,齿腔近壁面气体温度升高。篦齿封严局部气体温度既有升高也有降低,总体上温度沿轴向降低;静态篦齿封严气体温度随压比和相对封严间隙的增加而降低,当压比为1.6,相对封严间隙为1.6时,温降最多为4.70 K;静态篦齿封严的温变效应主要是由其节流效应、热力学效应和摩擦效应产生。气体在间隙由于节流效应,分子动能减小,在齿腔由于热力学效应,涡流中心动能传递给涡流外缘,在齿腔近壁面由于摩擦效应,气体动能转换为热能。研究成果为篦齿封严间隙气流热分析提供了理论依据。Abstract:Theoretical analysis and numerical calculation methods were used to systematically study the generation mechanism and influencing factors of the temperature variation effect of the static labyrinth seals. A theoretical analysis of the temperature variation effect of the static labyrinth seals was carried out, and a numerical solution model based on the RNG (renormalization group)
k -ε turbulence equation was established. The temperature variation effect of static labyrinth seals was studied, the influence of pressure ratio and relative seal clearances on the temperature variation effect was analyzed, and the generation mechanism of the temperature variation effect of static labyrinth seals was revealed. The results showed that the temperature of the gas flowing through the seal clearances first decreased and then increased, and the temperature increased from the center of the swirl to the outer edge, and the temperature of the gas near the wall of the labyrinth cavity increased. The local gas temperature of the labyrinth seals increased or decreased, and the overall temperature decreased along the axial direction; the temperature of the static labyrinth seals gas decreased with the increase of the pressure ratio and the relative seal clearances. When the pressure ratio was 1.6 and the relative seal clearances was 1.6, the temperature drop was at most 4.70 K; the temperature variation effect of the static labyrinth seals was mainly caused by its throttling effect, thermodynamic effect and friction effect. Due to the throttling effect in the clearances, the molecular kinetic energy of the gas decreased. In the labyrinth cavity, due to the thermodynamic effect, the kinetic energy of the center of the swirl was transferred to the outer edge of the swirl. Due to the friction effect on the near wall of the labyrinth cavity, the kinetic energy of the gas was converted into heat energy. The research results provide a theoretical basis for the thermal analysis of the airflow in the labyrinth seals clearances. -
表 1 静态篦齿封严结构尺寸
Table 1. Static labyrinth seals structure size
结构参数 数值 进口下壁面半径/mm 147.30 出口下壁面半径/mm 148.80 齿高/mm 3.20 齿腔底部半径/mm 150.00 上壁面半径/mm 153.55 齿尖厚度/mm 0.30 齿距/mm 3.00 表 2 静态篦齿封严边界条件
Table 2. Boundary conditions of static labyrinth seals
边界条件 数值 压比 1.2~2.0 进口温度/K 300.0 表 3 不同方法计算的篦齿封严泄漏量和风阻温升值
Table 3. Labyrinth seals leakage and windage heating calculated by different methods
参数 本文CFD 文献[22] 相对误差/% 泄漏量/(g/s) 9.50 9.69 1.96 风阻温升/K 7.89 7.85 0.51 -
[1] ILIEVA G,PIROVSKY C. Labyrinth seals with application to turbomachinery[J]. Materialwissenschaft and Werkstofftechnik,2019,50(5): 479-491. doi: 10.1002/mawe.201900004 [2] 孙丹,卢江,刘永泉,等. 篦齿封严风阻温升特性研究[J]. 航空学报,2018,39(11): 122357.SUN Dan,LU Jiang,LIU Yongquan,et al. Investigation on windage heating characteristics of labyrinth seals[J]. Acta Aeronautica et Astronautica Sinica,2018,39(11): 122357. (in Chinese) [3] 《航空发动机设计手册》总编委会. 航空发动机设计手册: 第12册 传动及润滑系统[M]. 北京: 航空工业出版社, 2002: 305-306. [4] MCGREEHAN W F, KO S H. Power dissipation in smooth and honeycomb labyrinth seals[R]. ASME Paper 89-GT-220, 1989. [5] MILLWARD J A,EDWARDS M F. Windage heating of air passing through labyrinth seals[J]. Journal of Turbomachinery,1996,118(2): 414-419. doi: 10.1115/1.2836657 [6] NAYAK K C. Effect of rotation on leakage and windage heating in labyrinth seals with honeycomb lands[J]. Journal of Engineering for Gas Turbines and Power,2020,142(8): 081001.1-081001.11. [7] WITTIG S, WASCHKA W, SCHERER T. Numerical predictions of high-speed rotating labyrinth seal performance: influence of rotation on power dissipation and temperature rise[C]//Proceedings of the 1992 International Symposium on Heat Transfer in Turbomachinery. Connecticut, USA: Begellhouse, 1994: 233-244. [8] 孙丹,卢江,王雯,等. 基于热力学效应的迷宫密封封严机理数值研究[J]. 热力透平,2018,47(3): 175-181.SUN Dan,LU Jiang,WANG Wen,et al. Numerical investigations for sealing mechanism of labyrinth seals based on thermodynamic effect[J]. Thermal Turbine,2018,47(3): 175-181. (in Chinese) [9] 孔晓治,刘高文,陈凯. 齿位置对压气机级间封严影响的数值研究[J]. 航空动力学报,2015,30(12): 2925-2933.KONG Xiaozhi,LIU Gaowen,CHEN Kai. Numerical study on the influences of tooth position in compressor stator well sealing[J]. Journal of Aerospace Power,2015,30(12): 2925-2933. (in Chinese) [10] 刘振侠,赵海刚,张丽芬,等. 静态封严篦齿内部流动与换热的数值计算[J]. 航空动力学报,2008,23(3): 448-453.LIU Zhenxia,ZHAO Haigang,ZHANG Lifen,et al. Numerical analyses of flow field and heat transfer in cavity of straight labyrinth seal at static state[J]. Journal of Aerospace Power,2008,23(3): 448-453. (in Chinese) [11] YAN Xin,LI Jun,SONG Liming,et al. Investigations on the discharge and total temperature increase characteristics of the labyrinth seals with honeycomb and smooth lands[J]. Journal of Turbomachinery,2009,131(4): 0410091-0410098. [12] DENECKE J, DULLENKOPF K, WITTIG S, et al. Experimental investigation of the total temperature increase and swirl development in rotating labyrinth seals[R]. ASME Paper GT2005-68677, 2005. [13] 聂顺鹏,刘高文,雷昭,等. 有无蜂窝的直通斜齿流动特性旋转实验研究[J]. 推进技术,2020,41(5): 1015-1022.NIE Shunpeng,LIU Gaowen,LEI Zhao,et al. Experimental study on rotation on flow characteristics of straight-through inclined tooth with or without honeycomb[J]. Journal of Propulsion Technology,2020,41(5): 1015-1022. (in Chinese) [14] 孔晓治,刘高文,雷昭,等. 转速对压气机级间篦齿封严影响的实验[J]. 航空动力学报,2016,31(7): 1575-1582.KONG Xiaozhi,LIU Gaowen,LEI Zhao,et al. Experiment on influence of rotational speeds on labyrinth seal in compressor stator well[J]. Journal of Aerospace Power,2016,31(7): 1575-1582. (in Chinese) [15] 呼艳丽,刘玉芳,王鹏飞. 旋转状态下阶梯齿风阻温升的初步分析[J]. 燃气涡轮试验与研究,2009,22(3): 47-49. doi: 10.3969/j.issn.1672-2620.2009.03.011HU Yanli,LIU Yufang,WANG Pengfei. Preliminary analysis of the windage temperature rise in rotating labyrinth seals[J]. Gas Turbine Experiment and Research,2009,22(3): 47-49. (in Chinese) doi: 10.3969/j.issn.1672-2620.2009.03.011 [16] 王鹏飞,郭文,张靖周. 旋转封严篦齿风阻温升的试验研究与数值分析[J]. 航空动力学报,2013,28(6): 1402-1408.WANG Pengfei,GUO Wen,ZHANG Jingzhou. Experimental investigation and numerical analysis of windage heating in rotating labyrinth seals[J]. Journal of Aerospace Power,2013,28(6): 1402-1408. (in Chinese) [17] 王鹏飞,郭文,张靖周. 典型阶梯篦齿高转速密封性能试验[J]. 航空动力学报,2017,32(12): 3057-3063.WANG Pengfei,GUO Wen,ZHANG Jingzhou. Experiment on seal characteristics of high ratational speed of stepped labyrinth seals[J]. Journal of Aerospace Power,2017,32(12): 3057-3063. (in Chinese) [18] 纪国剑,吉洪湖,黄云霞,等. 直通篦齿蜂窝封严结构的风阻特性试验[J]. 航空动力学报,2011,26(12): 2655-2660.JI Guojian,JI Honghu,HUANG Yunxia,et al. Experiment investigation of windage heating on straight-through labyrinth seals with honeycomb bush[J]. Journal of Aerospace Power,2011,26(12): 2655-2660. (in Chinese) [19] TAO Zhi,ZHANG Da,LUO Xiang,et al. Windage heating in a shrouded rotor-stator system[J]. Journal of Engineering for Gas Turbines and Power,2014,136(6): 062602.1-62602.10. [20] 任建华,谢福寿,王磊,等. 热力学排气系统中节流效应及其冷量利用分析[J]. 宇航学报,2020,41(4): 490-498.REN Jianhua,XIE Fushou,WANG Lei,et al. Analysis on throttling effect and cooling capacity utilization in thermodynamic vent system[J]. Journal of Astronautics,2020,41(4): 490-498. (in Chinese) [21] 陈光明, 陈国邦. 制冷与低温原理[M]. 北京: 机械工业出版社, 2000: 32-33. [22] SUN Dan,ZHOU Min,ZHAO Huan,et al. Numerical and experimental investigations on windage heating effect of labyrinth seals[J]. Journal of Aerospace Engineering,2020,33(5): 040200571-040200579. -