留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静态篦齿封严温变效应产生机理数值研究

李昶威 孙丹 赵欢 王泽铭 张然

李昶威, 孙丹, 赵欢, 等. 静态篦齿封严温变效应产生机理数值研究[J]. 航空动力学报, 2024, 39(2):20220219 doi: 10.13224/j.cnki.jasp.20220219
引用本文: 李昶威, 孙丹, 赵欢, 等. 静态篦齿封严温变效应产生机理数值研究[J]. 航空动力学报, 2024, 39(2):20220219 doi: 10.13224/j.cnki.jasp.20220219
LI Changwei, SUN Dan, ZHAO Huan, et al. Numerical study on the generation mechanism of temperature variation effect of static labyrinth seals[J]. Journal of Aerospace Power, 2024, 39(2):20220219 doi: 10.13224/j.cnki.jasp.20220219
Citation: LI Changwei, SUN Dan, ZHAO Huan, et al. Numerical study on the generation mechanism of temperature variation effect of static labyrinth seals[J]. Journal of Aerospace Power, 2024, 39(2):20220219 doi: 10.13224/j.cnki.jasp.20220219

静态篦齿封严温变效应产生机理数值研究

doi: 10.13224/j.cnki.jasp.20220219
基金项目: 国家自然科学基金(52075346,51675351); 先进航空动力创新工作站(依托中国航空发动机研究院设立)项目(HKC2020-02-030)
详细信息
    作者简介:

    李昶威(1999-),男,硕士生,主要从事篦齿封严温变效应研究

    通讯作者:

    孙丹(1981-),男,教授,博士,主要从事透平机械先进密封技术研究。E-mail:phd_sundan@163.com

  • 中图分类号: V23

Numerical study on the generation mechanism of temperature variation effect of static labyrinth seals

  • 摘要:

    采用理论分析和数值计算的方法系统地研究了静态篦齿封严温变效应产生机理和影响因素,对静态篦齿封严温变效应进行了理论分析,建立了基于RNG(renormalization group) k-ε湍流方程的数值求解模型。研究了静态篦齿封严温变效应,分析了压比和相对封严间隙对温变效应的影响规律,揭示了静态篦齿封严温变效应产生机理。结果表明:气体流经封严间隙温度先降低后升高,从涡流中心到外缘温度升高,齿腔近壁面气体温度升高。篦齿封严局部气体温度既有升高也有降低,总体上温度沿轴向降低;静态篦齿封严气体温度随压比和相对封严间隙的增加而降低,当压比为1.6,相对封严间隙为1.6时,温降最多为4.70 K;静态篦齿封严的温变效应主要是由其节流效应、热力学效应和摩擦效应产生。气体在间隙由于节流效应,分子动能减小,在齿腔由于热力学效应,涡流中心动能传递给涡流外缘,在齿腔近壁面由于摩擦效应,气体动能转换为热能。研究成果为篦齿封严间隙气流热分析提供了理论依据。

     

  • 图 1  篦齿封严温变效应产生机理图

    Figure 1.  Mechanism of temperature variation effect of labyrinth seals

    图 2  静态篦齿封严结构示意图

    Figure 2.  Schematic diagram of static labyrinth seals structure

    图 3  网格划分

    Figure 3.  Grid generation method

    图 4  网格节点数对泄漏量的影响

    Figure 4.  Influences of number of grid nodes on leakage

    图 5  准确性验证模型总温云图

    Figure 5.  Total temperature contour of accuracy verification model

    图 6  节流过程气流温度变化

    Figure 6.  Temperature variation of airflow during throttling

    图 7  涡流和近壁面气流温度变化

    Figure 7.  Temperature variation of airflow in swirl and near wall

    图 8  静态篦齿封严泄漏流的总温云图(s/b=0.8)

    Figure 8.  Total temperature contour of static labyrinth seals (s/b= 0.8)

    图 9  静态篦齿封严泄漏流的总温云图(π=1.6)

    Figure 9.  Total temperature contour of static labyrinth seals (π=1.6)

    图 10  静态篦齿封严速度矢量图

    Figure 10.  Velocity vectors of static labyrinth seals

    图 11  静态篦齿封严轴向总压分布

    Figure 11.  Distribution of axial total pressure of static labyrinth seals

    图 12  静态篦齿封严气流轴向温度随压比的变化

    Figure 12.  Variation of axial temperature of static labyrinth seals airflow with pressure ratio

    图 13  静态篦齿封严气流轴向温度随相对封严间隙的变化

    Figure 13.  Variation of axial temperature of static labyrinth seals airflow with relative seal clearances

    图 14  压比和相对封严间隙对温变效应的影响机理

    Figure 14.  Influence mechanism of pressure ratio and relative seal clearances on temperature variation effect

    图 15  节流过程参数变化

    Figure 15.  Throttling process parameter changes

    图 16  涡流效应能量传递

    Figure 16.  Swirl effect energy transfer

    图 17  壁面附近速度分布示意图

    Figure 17.  Schematic diagram of velocity distribution near the wall

    表  1  静态篦齿封严结构尺寸

    Table  1.   Static labyrinth seals structure size

    结构参数数值
    进口下壁面半径/mm147.30
    出口下壁面半径/mm148.80
    齿高/mm3.20
    齿腔底部半径/mm150.00
    上壁面半径/mm153.55
    齿尖厚度/mm0.30
    齿距/mm3.00
    下载: 导出CSV

    表  2  静态篦齿封严边界条件

    Table  2.   Boundary conditions of static labyrinth seals

    边界条件数值
    压比1.2~2.0
    进口温度/K300.0
    下载: 导出CSV

    表  3  不同方法计算的篦齿封严泄漏量和风阻温升值

    Table  3.   Labyrinth seals leakage and windage heating calculated by different methods

    参数本文CFD文献[22]相对误差/%
    泄漏量/(g/s)9.509.691.96
    风阻温升/K7.897.850.51
    下载: 导出CSV
  • [1] ILIEVA G,PIROVSKY C. Labyrinth seals with application to turbomachinery[J]. Materialwissenschaft and Werkstofftechnik,2019,50(5): 479-491. doi: 10.1002/mawe.201900004
    [2] 孙丹,卢江,刘永泉,等. 篦齿封严风阻温升特性研究[J]. 航空学报,2018,39(11): 122357.

    SUN Dan,LU Jiang,LIU Yongquan,et al. Investigation on windage heating characteristics of labyrinth seals[J]. Acta Aeronautica et Astronautica Sinica,2018,39(11): 122357. (in Chinese)
    [3] 《航空发动机设计手册》总编委会. 航空发动机设计手册: 第12册 传动及润滑系统[M]. 北京: 航空工业出版社, 2002: 305-306.
    [4] MCGREEHAN W F, KO S H. Power dissipation in smooth and honeycomb labyrinth seals[R]. ASME Paper 89-GT-220, 1989.
    [5] MILLWARD J A,EDWARDS M F. Windage heating of air passing through labyrinth seals[J]. Journal of Turbomachinery,1996,118(2): 414-419. doi: 10.1115/1.2836657
    [6] NAYAK K C. Effect of rotation on leakage and windage heating in labyrinth seals with honeycomb lands[J]. Journal of Engineering for Gas Turbines and Power,2020,142(8): 081001.1-081001.11.
    [7] WITTIG S, WASCHKA W, SCHERER T. Numerical predictions of high-speed rotating labyrinth seal performance: influence of rotation on power dissipation and temperature rise[C]//Proceedings of the 1992 International Symposium on Heat Transfer in Turbomachinery. Connecticut, USA: Begellhouse, 1994: 233-244.
    [8] 孙丹,卢江,王雯,等. 基于热力学效应的迷宫密封封严机理数值研究[J]. 热力透平,2018,47(3): 175-181.

    SUN Dan,LU Jiang,WANG Wen,et al. Numerical investigations for sealing mechanism of labyrinth seals based on thermodynamic effect[J]. Thermal Turbine,2018,47(3): 175-181. (in Chinese)
    [9] 孔晓治,刘高文,陈凯. 齿位置对压气机级间封严影响的数值研究[J]. 航空动力学报,2015,30(12): 2925-2933.

    KONG Xiaozhi,LIU Gaowen,CHEN Kai. Numerical study on the influences of tooth position in compressor stator well sealing[J]. Journal of Aerospace Power,2015,30(12): 2925-2933. (in Chinese)
    [10] 刘振侠,赵海刚,张丽芬,等. 静态封严篦齿内部流动与换热的数值计算[J]. 航空动力学报,2008,23(3): 448-453.

    LIU Zhenxia,ZHAO Haigang,ZHANG Lifen,et al. Numerical analyses of flow field and heat transfer in cavity of straight labyrinth seal at static state[J]. Journal of Aerospace Power,2008,23(3): 448-453. (in Chinese)
    [11] YAN Xin,LI Jun,SONG Liming,et al. Investigations on the discharge and total temperature increase characteristics of the labyrinth seals with honeycomb and smooth lands[J]. Journal of Turbomachinery,2009,131(4): 0410091-0410098.
    [12] DENECKE J, DULLENKOPF K, WITTIG S, et al. Experimental investigation of the total temperature increase and swirl development in rotating labyrinth seals[R]. ASME Paper GT2005-68677, 2005.
    [13] 聂顺鹏,刘高文,雷昭,等. 有无蜂窝的直通斜齿流动特性旋转实验研究[J]. 推进技术,2020,41(5): 1015-1022.

    NIE Shunpeng,LIU Gaowen,LEI Zhao,et al. Experimental study on rotation on flow characteristics of straight-through inclined tooth with or without honeycomb[J]. Journal of Propulsion Technology,2020,41(5): 1015-1022. (in Chinese)
    [14] 孔晓治,刘高文,雷昭,等. 转速对压气机级间篦齿封严影响的实验[J]. 航空动力学报,2016,31(7): 1575-1582.

    KONG Xiaozhi,LIU Gaowen,LEI Zhao,et al. Experiment on influence of rotational speeds on labyrinth seal in compressor stator well[J]. Journal of Aerospace Power,2016,31(7): 1575-1582. (in Chinese)
    [15] 呼艳丽,刘玉芳,王鹏飞. 旋转状态下阶梯齿风阻温升的初步分析[J]. 燃气涡轮试验与研究,2009,22(3): 47-49. doi: 10.3969/j.issn.1672-2620.2009.03.011

    HU Yanli,LIU Yufang,WANG Pengfei. Preliminary analysis of the windage temperature rise in rotating labyrinth seals[J]. Gas Turbine Experiment and Research,2009,22(3): 47-49. (in Chinese) doi: 10.3969/j.issn.1672-2620.2009.03.011
    [16] 王鹏飞,郭文,张靖周. 旋转封严篦齿风阻温升的试验研究与数值分析[J]. 航空动力学报,2013,28(6): 1402-1408.

    WANG Pengfei,GUO Wen,ZHANG Jingzhou. Experimental investigation and numerical analysis of windage heating in rotating labyrinth seals[J]. Journal of Aerospace Power,2013,28(6): 1402-1408. (in Chinese)
    [17] 王鹏飞,郭文,张靖周. 典型阶梯篦齿高转速密封性能试验[J]. 航空动力学报,2017,32(12): 3057-3063.

    WANG Pengfei,GUO Wen,ZHANG Jingzhou. Experiment on seal characteristics of high ratational speed of stepped labyrinth seals[J]. Journal of Aerospace Power,2017,32(12): 3057-3063. (in Chinese)
    [18] 纪国剑,吉洪湖,黄云霞,等. 直通篦齿蜂窝封严结构的风阻特性试验[J]. 航空动力学报,2011,26(12): 2655-2660.

    JI Guojian,JI Honghu,HUANG Yunxia,et al. Experiment investigation of windage heating on straight-through labyrinth seals with honeycomb bush[J]. Journal of Aerospace Power,2011,26(12): 2655-2660. (in Chinese)
    [19] TAO Zhi,ZHANG Da,LUO Xiang,et al. Windage heating in a shrouded rotor-stator system[J]. Journal of Engineering for Gas Turbines and Power,2014,136(6): 062602.1-62602.10.
    [20] 任建华,谢福寿,王磊,等. 热力学排气系统中节流效应及其冷量利用分析[J]. 宇航学报,2020,41(4): 490-498.

    REN Jianhua,XIE Fushou,WANG Lei,et al. Analysis on throttling effect and cooling capacity utilization in thermodynamic vent system[J]. Journal of Astronautics,2020,41(4): 490-498. (in Chinese)
    [21] 陈光明, 陈国邦. 制冷与低温原理[M]. 北京: 机械工业出版社, 2000: 32-33.
    [22] SUN Dan,ZHOU Min,ZHAO Huan,et al. Numerical and experimental investigations on windage heating effect of labyrinth seals[J]. Journal of Aerospace Engineering,2020,33(5): 040200571-040200579.
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  30
  • HTML浏览量:  11
  • PDF量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-16
  • 网络出版日期:  2023-07-05

目录

    /

    返回文章
    返回