留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分布式电推进飞机动力偏航非线性动态逆控制

尤顺 寇鹏 姚轩宇 王京 梁得亮 梁哲

尤顺, 寇鹏, 姚轩宇, 等. 分布式电推进飞机动力偏航非线性动态逆控制[J]. 航空动力学报, 2024, 39(2):20220222 doi: 10.13224/j.cnki.jasp.20220222
引用本文: 尤顺, 寇鹏, 姚轩宇, 等. 分布式电推进飞机动力偏航非线性动态逆控制[J]. 航空动力学报, 2024, 39(2):20220222 doi: 10.13224/j.cnki.jasp.20220222
YOU Shun, KOU Peng, YAO Xuanyu, et al. Nonlinear dynamic inversion for the powered yaw control of distributed electric propulsion aircraft[J]. Journal of Aerospace Power, 2024, 39(2):20220222 doi: 10.13224/j.cnki.jasp.20220222
Citation: YOU Shun, KOU Peng, YAO Xuanyu, et al. Nonlinear dynamic inversion for the powered yaw control of distributed electric propulsion aircraft[J]. Journal of Aerospace Power, 2024, 39(2):20220222 doi: 10.13224/j.cnki.jasp.20220222

分布式电推进飞机动力偏航非线性动态逆控制

doi: 10.13224/j.cnki.jasp.20220222
基金项目: 国家自然科学基金重点项目(51737010)
详细信息
    作者简介:

    尤顺(1998-),男,硕士生,主要从事电推进飞机和电动机先进控制研究

    通讯作者:

    寇鹏(1983-),男,教授、博士生导师,博士,主要从事电推进飞机、预测控制等方面的研究。E-mail:koupeng@mail.xjtu.edu.cn

  • 中图分类号: V249.122+.2

Nonlinear dynamic inversion for the powered yaw control of distributed electric propulsion aircraft

  • 摘要:

    分布式电推进飞机可通过多推进器间的推力差动来调节飞行姿态,从而为实现动力偏航提供了硬件条件。为此,提出一种基于非线性动态逆的动力偏航控制策略。建立考虑分布式电推进系统推力差动的飞机非线性飞行动力学模型,并基于时标分离原则,将其划分为快状态子系统和慢状态子系统。随后,针对慢状态子系统的非线性特性,设计非线性动态逆控制器实现动力偏航控制,所计算出的滚转、俯仰、偏航速率作为参考指令传递给快状态子系统。快状态子系统控制器同样基于非线性动态逆方法设计,通过调节各分布式推进器间的推力差动,实现对给定滚转、俯仰、偏航速率的跟踪。考虑到分布式电推进系统具有天然的冗余性和容错性,将动力偏航控制策略拓展至了推进器冗余和故障等特殊工况。同时,针对分布式电推进器易受突风、电动机参数变化等扰动影响的问题,设计了基于自抗扰方法的各电推进器本地推力控制器。数值仿真结果表明:该策略可以实现90°动力偏航,并且可以抵抗15 m/s的突风扰动。

     

  • 图 1  X-57分布式电推进飞机

    Figure 1.  X-57 distributed electric propulsion aircraft

    图 2  X-57在OpenVSP中的气动模型

    Figure 2.  X-57 dynamic model in OpenVSP

    图 3  分布式电推进飞机快慢时标子系统

    Figure 3.  Fast and slow flight dynamic subsystem

    图 4  分布式电推进飞机动力偏航控制系统结构

    Figure 4.  Powered yaw control system for the distributed electric propulsion aircraft

    图 5  推进器本地双闭环控制系统

    Figure 5.  Local double-loop thrust controller of an electric propulsor

    图 6  推进器自抗扰控制器结构

    Figure 6.  ADRC thrust controller

    图 7  螺旋桨示意图[28]

    Figure 7.  Propeller diagram[28]

    图 8  动力偏航过程中状态变化

    Figure 8.  Flight states during powered yaw

    图 9  动力偏航时非线性动态逆控制器输出推力指令

    Figure 9.  Thrust commands given by nonlinear dynamic inversion controller during powered yaw

    图 10  动力偏航期间飞行轨迹

    Figure 10.  Flight trajectory during powered yaw

    图 11  Cruise 1不参与偏航控制时推进器推力指令

    Figure 11.  Thrust commands of propulsors when cruise 1 does not participate in the powered yaw control

    图 12  HIL2故障下动力偏航时推进器推力指令

    Figure 12.  Thrust commands of propulsors during powered yaw in the presence of HIL2 failure

    图 13  巡航推进器在不同突风下的等效负载

    Figure 13.  Equivalent loads of cruise propulsors in the presence of different gusts

    图 14  高升力推进器在不同突风下的等效负载

    Figure 14.  Equivalent loads of highlift propulsors in the presence of different gusts

    图 15  突风测试中所用到动力偏航推力指令

    Figure 15.  Powered yaw commands used in the gust-scenario test

    图 16  遭遇前向突风时各推进器负载转矩

    Figure 16.  Load torque of propulsors in the presence of forward gust

    图 17  遭遇后向突风时各推进器负载转矩

    Figure 17.  Load torque of propulsors in the presence of backward gust

    图 18  遭遇前向突风时各推进器转速

    Figure 18.  Speed of propulsors in the presence of forward gust

    图 19  遭遇后向突风时各推进器转速

    Figure 19.  Speed of propulsors in the presence of backward gust

    图 20  电动机参数固定时巡航推进器转速

    Figure 20.  Speed of cruise propulsor with constant motor parameters

    图 21  电动机参数发生漂移情景下巡航推进器转速

    Figure 21.  Speed of cruise propulsor in the presence of time-varying motor parameters

  • [1] 孔祥浩,张卓然,陆嘉伟,等. 分布式电推进飞机电力系统研究综述[J]. 航空学报,2018,39(1): 46-62.

    KONG Xianghao,ZHANG Zhuoran,LU Jiawei,et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica,2018,39(1): 46-62. (in Chinese)
    [2] 廖忠权. 航空混合电推进系统发展研究[J]. 航空动力,2018(2): 45-50.

    LIAO Zhongquan. Research on the development of hybrid electric propulsion system[J]. Aerospace Power,2018(2): 45-50. (in Chinese)
    [3] STOLL A M, BEVIRT J, MOORE M D, et al. Drag reduction through distributed electric propulsion[R]. AIAA 2014-2851, 2014.
    [4] PFEIFLE O, FRANGENBERG M, NOTTER S, et al. Distributed electric propulsion for yaw control: testbeds, control approach, and flight testing[R]. AIAA 2021-3192, 2021.
    [5] DE HEER P. Incremental nonlinear control allocation for an aircraft with distributed electric propulsion: an application to the scaled flight demonstrator[D]. Mekelweg, Nederland: Delft University of Technology, 2021.
    [6] KLUNK G T, FREEMAN J L, SCHILTGEN B T. Tail area reduction for aircraft with spanwise distributed electric propulsion[C]//2018 AIAA/IEEE Electric Aircraft Technologies Symposium. Piscataway, US: IEEE, 2018: 1-13.
    [7] PIEPER K, PERRY A, ANSELL P, et al. Design and development of a dynamically, scaled distributed electric propulsion aircraft testbed[C]//2018 AIAA/IEEE Electric Aircraft Technologies Symposium. Piscataway, US: IEEE, 2018: 1-2.
    [8] WORTMANN G. Investigating the dynamic response of hybrid-electric propulsion systems for flight control application[D]. Munich: Technische Universitaet Muenchen, 2016.
    [9] VAN E, VAN E, TROILLARD P, et al. Reduction of vertical tail using differential thrust: influence on flight control and certification[C]//Proceedings of Advanced Aircraft Efficiency in a Global Air Transport System (AEGATS'18). Toulouse, France, 2018: 1-8.
    [10] FREEMAN J L, KLUNK G T. Dynamic flight simulation of spanwise distributed electric propulsion for directional control authority[C]//2018 AIAA/IEEE Electric Aircraft Technologies Symposium. Piscataway, US: IEEE, 2018: 1-15.
    [11] LODER D C, BOLLMAN A, ARMSTRONG M J. Turbo-electric distributed aircraft propulsion: microgrid architecture and evaluation for ECO-150[C]//2018 IEEE Transportation Electrification Conference and Expo (ITEC). Long Beach, US: IEEE, 2018: 550-557.
    [12] WENG Luhui,ZHANG Xuan,YAO Taike,et al. A thrust cooperative control strategy of multiple propulsion motors for distributed electric propulsion aircraft[J]. World Electric Vehicle Journal,2021,12(4): 199. doi: 10.3390/wevj12040199
    [13] VECHTEL D,BUCH J P. Aspects of yaw control design of an aircraft with distributed electric propulsion[J]. CEAS Aeronautical Journal,2022,13(4): 847-860. doi: 10.1007/s13272-022-00595-1
    [14] WANG Zhihui,ZHANG Jing,YANG Lingyu. Weighted pseudo-inverse based control allocation of heterogeneous redundant operating mechanisms for distributed propulsion configuration[J]. Energy Procedia,2019,158: 1718-1723. doi: 10.1016/j.egypro.2019.01.400
    [15] VAN E N,ALAZARD D,DÖLL C,et al. Co-design of aircraft vertical tail and control laws with distributed electric propulsion and flight envelop constraints[J]. CEAS Aeronautical Journal,2021,12(1): 101-113. doi: 10.1007/s13272-020-00481-8
    [16] KOU Peng,WANG Jing,LIANG Deliang. Powered yaw control for distributed electric propulsion aircraft: a model predictive control approach[J]. IEEE Transactions on Transportation Electrification,2021,7(4): 3006-3020. doi: 10.1109/TTE.2021.3068724
    [17] Tecnam. X-57 maxwell NASA[EB/OL]. [2022-04-01].https: //www.tecnam.com/innovation/p2006t-x-57-maxwell-nasa/.
    [18] GLOUDEMANS J R.OpenVSP software package[EB/OL]. [2022-04-01]. http: //openvsp.org/.
    [19] LEITH D J,LEIGHEAD W E. Gain-scheduled control: relaxing slow variation requirements by velocity-based design[J]. Journal of Guidance, Control and Dynamics,2000,23(6): 988-1000. doi: 10.2514/2.4667
    [20] 王书礼,马少华,张硕. 突风气象条件下电动飞机电推进系统PI控制参数的设定方法[J]. 电动机与控制应用,2019,46(5): 83-88.

    WANG Shuli,MA Shaohua,ZHANG Shuo. Setting method of PI control parameters for electric propulsion system of electric aircraft under gust encounters[J]. Electric Machines & Control Application,2019,46(5): 83-88. (in Chinese)
    [21] 韩京清. 自抗扰控制器及其应用[J]. 控制与决策,1998,13(1): 19-23. doi: 10.3321/j.issn:1001-0920.1998.01.005

    HAN Jingqing. Auto-disturbances-rejection controller and its applications[J]. Control and Decision,1998,13(1): 19-23. (in Chinese) doi: 10.3321/j.issn:1001-0920.1998.01.005
    [22] HAN Jingqing. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics,2009,56(3): 900-906. doi: 10.1109/TIE.2008.2011621
    [23] DEERE K A, VIKEN J K, VIKEN S, et al. Computational analysis of a wing designed for the X-57 distributed electric propulsion aircraft[R]. AIAA 2017-3923, 2017.
    [24] 孙凯,许镇琳,邹积勇. 基于自抗扰控制器的永磁同步电动机无位置传感器矢量控制系统[J]. 中国电动机工程学报,2007,27(3): 18-22.

    SUN Kai,XU Zhenlin,ZOU Jiyong. A novel approach to position senseorless vector control of PMSM based on active-disturbance rejection controller[J]. Proceedings of the CSEE,2007,27(3): 18-22. (in Chinese)
    [25] 韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008.
    [26] GUO Baozhu,WU Zehao. Output tracking for a class of nonlinear systems with mismatched uncertainties by active disturbance rejection control[J]. Systems & Control Letters,2017,100: 21-31.
    [27] MAJUMDER L,RAO S S. Interval-based multi-objective optimization of aircraft wings under gust loads[J]. AIAA Journal,2009,47(3): 563-575. doi: 10.2514/1.37224
    [28] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社, 2006.
  • 加载中
图(21)
计量
  • 文章访问数:  37
  • HTML浏览量:  34
  • PDF量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 网络出版日期:  2023-06-19

目录

    /

    返回文章
    返回