留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直升机旋翼结冰影响及防/除冰方法综述

李伟斌 郝云权 王建涛 周铸 肖中云

李伟斌, 郝云权, 王建涛, 等. 直升机旋翼结冰影响及防/除冰方法综述[J]. 航空动力学报, 2023, 38(2):257-268 doi: 10.13224/j.cnki.jasp.20220230
引用本文: 李伟斌, 郝云权, 王建涛, 等. 直升机旋翼结冰影响及防/除冰方法综述[J]. 航空动力学报, 2023, 38(2):257-268 doi: 10.13224/j.cnki.jasp.20220230
LI Weibin, HAO Yunquan, WANG Jiantao, et al. Review on influences of helicopter rotor icing and anti-/de-icing methods[J]. Journal of Aerospace Power, 2023, 38(2):257-268 doi: 10.13224/j.cnki.jasp.20220230
Citation: LI Weibin, HAO Yunquan, WANG Jiantao, et al. Review on influences of helicopter rotor icing and anti-/de-icing methods[J]. Journal of Aerospace Power, 2023, 38(2):257-268 doi: 10.13224/j.cnki.jasp.20220230

直升机旋翼结冰影响及防/除冰方法综述

doi: 10.13224/j.cnki.jasp.20220230
基金项目: 四川省科技计划项目(2021YJ0526); 国家数值风洞工程(National Numerical Windtunnel Project)
详细信息
    作者简介:

    李伟斌(1985-),男,副研究员,博士,主要从事飞机结冰特性及视觉测量研究

    通讯作者:

    王建涛(1982-),男,副研究员,博士,主要从事气-液两相流研究。E-mail:wangjiantao@cardc.cn

  • 中图分类号: V244.1

Review on influences of helicopter rotor icing and anti-/de-icing methods

  • 摘要:

    为深入认识旋翼结冰的影响,从结冰强度和桨尖冰脱落两个方面阐述了旋翼结冰的特征及其主要响应因素,进而归纳了结冰对直升机升阻力特性、悬停特性、操纵特性等气动影响,并提出了评估旋翼冰脱落对直升机物理损伤的主要思路和方法。介绍了旋翼防/除冰应用中的电热防/除冰、液体防冰和气动除冰等主要技术,系统分析了它们的优缺点:电热防/除冰除冰效率高,但能耗较大;液体防冰能耗低,但作用时间短,且防冰效率不高;气动除冰系统虽然能耗低,但其安装部位有限,并且易造成直升机气动损失。在此基础上,还针对当前直升机防除冰系统存在的缺点,从旋翼结冰的高精度预测、多种防/除冰系统的耦合开发、大面积超疏水材料制备工艺提升等多个方面,全面展望防/除冰未来发展中亟需解决的重要问题。

     

  • 图 1  冰形的宏观形貌

    Figure 1.  Category of ice shape

    图 2  桨叶水滴收集情况[15]

    Figure 2.  Droplet collection efficiency of the blade[15]

    图 3  旋翼桨叶结冰试验结果[18]

    Figure 3.  Test result of rotor blade icing[18]

    图 4  桨尖结冰脱落[17]

    Figure 4.  Ice shedding from blade tip[17]

    图 5  旋翼转速对翼型剖面冰形的影响[17]

    Figure 5.  Influence of rotor rotational speed on airfoil ice accretion[17]

    图 6  旋翼结冰后性能变化试验结果(Case 01)[17]

    Figure 6.  Test results of characteristics after rotor icing (Case 01)[17]

    图 7  不同位置桨叶拉力系数计算结果[21]

    Figure 7.  Computational results of the blade lift coefficient at different positions[21]

    图 8  扇形冰块飞机头部脱落轨迹图[26]

    Figure 8.  Tracks of fan-shaped ices shedding from the aircraft head[26]

    图 9  螺旋桨断裂脱落数值模拟结果

    Figure 9.  Numerical simulation results of propeller blade shedding

    图 10  旋翼结冰研究手段

    Figure 10.  Evaluating means of rotor icing

    图 11  旋翼防/除冰组件有/无石墨烯涂层传热效果对比[43]

    Figure 11.  Comparison of heat transfer effect of rotor anti-/de-icing component with and without graphene coating[43]

    图 12  网状加热元件金属丝网[49]

    Figure 12.  Metal wire of mesh heating elements[49]

    图 13  加热元件展向分区布局示意图[49]

    Figure 13.  Schematic diagram of directional zonal heating[49]

    图 14  电热-机械复合式除冰系统[52]

    Figure 14.  De-icing system combined the electrothermal and mechanical means[52]

    图 15  Ⅰ型流体在不同表面涂层之上的最低保持时间[67]

    Figure 15.  Endurance time for the different surfaces for fluid Ⅰ[67]

    图 16  Ⅳ型流体在不同表面涂层上的保持时间[67]

    Figure 16.  Endurance time for the different surfaces for fluid Ⅳ[67]

    图 17  旋转状态下低高压管示意图[71]

    Figure 17.  Schematic of low- and high-pressure lines under rotation[71]

    表  1  几类防/除冰技术的原理及特点

    Table  1.   Principle and characteristics of the main anti-/de-icing technologies

    方法原理特点
    电热防/除冰通过在防冰部位布置加热元件,将电能转化为热能,使防冰表面温度升高,冰层融化、脱落除冰效率高、具有广泛的可接受性,
    但电能消耗大、系统复杂
    液体防冰将冰点较低的防冰液喷洒至防冰表面,降低结冰的冰点,从而达到防冰效果消耗功率小、成本低,但防冰时间有限,
    除冰液占直升机有效载质量大
    气动除冰前缘布置除冰带,通过充气膨胀变形,破坏冰层与蒙皮间的黏附力,并利用气流将冰层甩出除冰效率高、能耗低,但易造成气动损失、
    降低机翼的疲劳寿命
    超声波除冰利用Lamb波和SH波在结冰与基底处产生切应力,使冰发生破碎和脱落能耗小、使用方便,但除冰效率不高
    电脉冲除冰利用机翼内部线圈产生电脉冲,激励机翼蒙皮快速鼓动,除去冰层结构简单、能耗小,但易损伤蒙皮
    气热防/除冰将发动机产生的热空气经过调温调压后,输送于机翼防冰段,使表面温度升高,达到防/除冰目的热源足、维修简单,但对发动机工作效率
    有较大影响
    下载: 导出CSV
  • [1] 黄明其,徐栋霞,何龙,等. 常规旋翼构型复合式高速直升机发展概况及关键技术[J]. 航空动力学报,2021,36(6): 1156-1168. doi: 10.13224/j.cnki.jasp.2021.06.004

    HUANG Mingqi,XU Dongxia,HE Long,et al. Development overview and key technologies of high speed hybrid helicopter with single main rotor[J]. Journal of Aerospace Power,2021,36(6): 1156-1168. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.06.004
    [2] 王适存. 直升机空气动力学[M]. 南京: 航空专业教材编审组, 1985: 10-50.
    [3] 黄明其. 直升机风洞试验[M]. 北京: 国防工业出版社, 2014: 1-5.
    [4] 陈希, 招启军. 考虑遮蔽区影响的旋翼三维水滴撞击特性计算新方法[J]. 航空学报, 2017, 38(6): 120745.1-120745.12.

    CHEN Xi, ZHAO Qijun. New method for predicting 3-D water droplet impingement on rotor considering influence of shadow zone[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120745.1-120745.12. (in Chinese)
    [5] 陈希, 招启军, 赵国庆. 计入离心力影响的直升机旋翼翼型结冰数值模拟[J]. 航空动力学报, 2014, 29(9): 2157-2165.

    CHEN Xi, ZHAO Qijun, ZHAO Guoqing. Numerical simulation of ice accretion on rotor airfoil of helicopter considering effects of centrifugal force[J]. Journal of Aerospace Power, 2014, 29(9): 2157-2165. (in Chinese)
    [6] 陈宁立, 杜健民, 吉洪湖, 等. 离心力对于旋转叶片表面积冰影响的数值模拟研究[J]. 推进技术, 2020, 41(6): 1314-1323.

    CHEN Ningli, DU Jianmin, JI Honghu, et al. Numerical study of effects of centrifugal force on ice accretion on a rotor blade[J]. Journal of Propulsion Technology, 2020, 41(6): 1314-1323. (in Chinese)
    [7] CHEN Ningli, JI Honghu, CAO Guangzhou, et al. A three-dimensional mathematical model for simulating ice accretion on helicopter rotors[J]. Physics of Fluids, 2018, 30(8): 083602.1-083602.12.
    [8] WANG Zhengzhi,ZHU Chunling. Numerical simulation of three-dimensional rotor icing in hovering flight[J]. Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering,2018,232(3): 545-555. doi: 10.1177/0954410016682273
    [9] 杨常卫,张功虎,孙涛,等. 黑鹰直升机旋翼桨叶防/除冰系统研究[J]. 直升机技术,2011,166(1): 37-44. doi: 10.3969/j.issn.1673-1220.2011.01.008

    YANG Changwei,ZHANG Gonghu,SUN Tao,et al. Development of black hawk helicopter rotor blade anti-/de-icing system[J]. Helicopter Technique,2011,166(1): 37-44. (in Chinese) doi: 10.3969/j.issn.1673-1220.2011.01.008
    [10] 观察者. 掌握这项关键技术的全世界算上中国只有4个[EB/OL]. [ 2020-11-27]. https: //www.guancha.cn/military-affairs/2020_11_ 27_572743.shtml.
    [11] 易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 四川 绵阳: 中国空气动力研究与发展中心, 2007.

    YI Xian. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang Sichuan: China Aerodynamics Research and Development Center, 2007. (in Chinese)
    [12] 倪章松,刘森云,张军,等. 环境参数对飞机防冰热载荷的影响规律[J]. 航空动力学报,2021,36(1): 8-14. doi: 10.13224/j.cnki.jasp.2021.01.002

    NI Zhangsong,LIU Senyun,ZHANG Jun,et al. Influence of environment parameters on anti-icing heat load for aircraft[J]. Journal of Aerospace Power,2021,36(1): 8-14. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.01.002
    [13] 何治,常世楠,袁修干. 悬停状态下直升机旋翼水滴撞击特性研究[J]. 北京航空航天大学学报,2003,29(11): 1055-1058. doi: 10.3969/j.issn.1001-5965.2003.11.022

    HE Zhi,CHANG Shinan,YUAN Xiugan. Research on droplet impingement property of rotor blade in hover[J]. Journal of Beijing University of Aeronautics and Astronautics,2003,29(11): 1055-1058. (in Chinese) doi: 10.3969/j.issn.1001-5965.2003.11.022
    [14] 张威,林永峰,陈平剑. 基于欧拉方法的旋翼翼型结冰数值模拟及参数影响[J]. 南京航空航天大学学报,2011,43(3): 375-380. doi: 10.3969/j.issn.1005-2615.2011.03.017

    ZHANG Wei,LIN Yongfeng,CHEN Pingjian. Numerical simulation of ice accretion and parameter effects based on eulerian droplet model[J]. Journal of Nanjing University of Aeronautics and Astronautics,2011,43(3): 375-380. (in Chinese) doi: 10.3969/j.issn.1005-2615.2011.03.017
    [15] LI Weibin, LI Kaicheng, SONG Chao, et al. Effect of droplet MVD on icing collection efficiency for a helicopter blade[R]. Shanghai: 32nd Congress of the International Council of the Aeronautical Sciences, 2021.
    [16] KREEGER E R, TSAO J. Ice shapes on a tail rotor[R]. AIAA-2014-2612, 2014.
    [17] 黄明其,王亮权,袁红刚,等. 直升机前飞状态旋翼结冰风洞试验研究[J]. 北京航空航天大学学报,2022,48(6): 929-936.

    HUANG Mingqi,WANG Liangquan,YUAN Honggang,et al. Icing wind tunnel test of a helicopter rotor model in forward flight state[J]. Journal of Beijing University of Aeronautics and Astronautics,2022,48(6): 929-936. (in Chinese)
    [18] 袁红刚,黄明其,彭先敏,等. 直升机旋翼模型结冰风洞试验技术[J]. 实验流体力学,2021,35(4): 60-66. doi: 10.11729/syltlx20200121

    YUAN Honggang,HUANG Mingqi,PENG Xianmin,et al. Research on icing wind tunnel test technology of helicopter rotor model[J]. Journal of Experiments in Fluid Mechanics,2021,35(4): 60-66. (in Chinese) doi: 10.11729/syltlx20200121
    [19] 栗枢,曹广州. 无人机螺旋桨三维积冰计算与积冰控制检测[J]. 测控技术,2021,40(8): 95-100. doi: 10.19708/j.ckjs.2021.08.018

    LI Shu,CAO Guangzhou. 3D ice accretion calculation and its control detection of UAV propeller[J]. Measurement and Control Technology,2021,40(8): 95-100. (in Chinese) doi: 10.19708/j.ckjs.2021.08.018
    [20] 徐玉貌,吕少杰,曹义华,等. 旋翼桨叶结冰对直升机飞行性能的影响[J]. 航空动力学报,2016,31(2): 187-194. doi: 10.13224/j.cnki.jasp.2016.02.019

    XU Yumao,LÜ Shaojie,CAO Yihua,et al. Effects of rotor blade icing on helicopter flight performance[J]. Journal of Aerospace Power,2016,31(2): 187-194. (in Chinese) doi: 10.13224/j.cnki.jasp.2016.02.019
    [21] 王正之,杜孟华,朱春玲,等. 直升机旋翼结冰后三维桨叶气动特性数值分析[J]. 空军工程大学学报(自然科学版),2021,22(1): 33-38.

    WANG Zhengzhi,DU Menghua,ZHU Chunling,et al. A numerical analysis on aerodynamic characteristics of three-dimensional iced rotor[J]. Journal of Air Force Engineering University (Natural Science Edition),2021,22(1): 33-38. (in Chinese)
    [22] 唐扬刚,唐虎,吴敬涛. 旋翼结冰对直升机悬停性能影响的数值分析[J]. 装备环境工程,2020,17(2): 104-108.

    TANG Yanggang,TANG Hu,WU Jingtao. Numerical analysis on effects of rotor icing on helicopter performance in hover[J]. Equipment Environmental Engineering,2020,17(2): 104-108. (in Chinese)
    [23] NARDUCCI R, KREEGER R E. Analysis of a hovering rotor in icing conditions[R]. NASA/TM-2012-217126, 2012.
    [24] 刘国强,于琦,董明明,等. 旋翼结冰对“黑鹰”直升机飞行性能影响分析[J]. 航空科学技术,2013(1): 34-37. doi: 10.3969/j.issn.1007-5453.2013.01.010

    LIU Guoqiang,YU Qi,DONG Mingming,et al. The influence of rotor icing to the flight performance of black hawk helicopter[J]. Aeronautical Science and Technology,2013(1): 34-37. (in Chinese) doi: 10.3969/j.issn.1007-5453.2013.01.010
    [25] Federal Aviation Administration. Certification of transport category airplanes for flight in icing conditions: AC 25.1419-1A[R]. Washington DC: US Department of Transportation, 2004.
    [26] 王建涛,易贤,肖中云,等. ARJ21-700飞机冰脱落数值模拟[J]. 空气动力学学报,2013,31(4): 430-436.

    WANG Jiantao,YI Xian,XIAO Zhongyun,et al. Numerical simulation of ice shedding from ARJ21-700[J]. Acta Aerodynamica Sinica,2013,31(4): 430-436. (in Chinese)
    [27] 冯丽娟,谭广琨,张强,等. 民用飞机机头冰脱落特性数值模拟[J]. 空气动力学学报,2015,33(4): 536-541. doi: 10.7638/kqdlxxb-2014.0005

    FENG Lijuan,TAN Guangkun,ZHANG Qiang,et al. Numerical simulation of ice shedding from civil airplane nose[J]. Acta Aerodynamica Sinica,2015,33(4): 536-541. (in Chinese) doi: 10.7638/kqdlxxb-2014.0005
    [28] JEREMY B, JUAN C, LAKSHMI S. Prediction of rotor blade ice shedding using empirical methods[R]. AIAA-2010-7985, 2010.
    [29] PAPADAKIS M, YEONG H W, SHIMOI K, et al. Ice shedding experiments with simulated ice shapes[R]. AIAA-2009-972, 2009.
    [30] 马率, 刘钒, 肖中云, 等. 基于多学科耦合仿真的螺旋桨飞机桨叶飞脱安全评估方法: 中国, ZL202111457289.6[P]. 2022-02-11.
    [31] 姜曙光. S-92完成人工结冰试验[EB/OL]. [2022-12-02]. http: //www.dsti.net/Information/News/18965.
    [32] 中国航空报社. 入夏了还要除冰?什么情况![EB/OL]. [2022-12-02].https: //www.sohu.com /a/232016685_115926.
    [33] ZHU Y, PALACIOS J L, ROSE J L, et al. Numerical simulation and experimental validation of tailored wave guides for ultrasonic de-icing on aluminum plates[R]. AIAA-2010-3043, 2010.
    [34] 何舟东,朱永峰,周景峰. 飞机电脉冲除冰技术探讨[J]. 实验流体力学,2016,30(2): 38-45. doi: 10.11729/syltlx20160022

    HE Zhoudong,ZHU Yongfeng,ZHOU Jingfeng. Study on electro-impulse de-icing technology[J]. Journal of Experiments in Fluid Mechanics,2016,30(2): 38-45. (in Chinese) doi: 10.11729/syltlx20160022
    [35] 王毅,元辛,张峰. 飞机机翼防除冰系统研究进展[J]. 河南科学,2012,30(9): 1246-1250. doi: 10.3969/j.issn.1004-3918.2012.09.019

    WANG Yi,YUAN Xin,ZHANG Feng. The development of the wing ice protection system[J]. Henan Science,2012,30(9): 1246-1250. (in Chinese) doi: 10.3969/j.issn.1004-3918.2012.09.019
    [36] ROSEN K M, POTASH M L. 40 years of helicopter ice protection experience at Sikorsky aircraft[R]. St. Louis, US: 19th Aerospace Sciences Meeting, 1981.
    [37] 肖春华,于昆龙,桂业伟,等. 一维和二维电热除冰相变传热特性的参数影响分析[J]. 航空动力学报,2018,33(4): 882-893. doi: 10.13224/j.cnki.jasp.2018.04.014

    XIAO Chunhua,YU Kunlong,GUI Yewei,et al. Analysis of parameteric influence on phase change heat transfer characteristics of 1-D and 2-D electrothermal deicing[J]. Journal of Aerospace Power,2018,33(4): 882-893. (in Chinese) doi: 10.13224/j.cnki.jasp.2018.04.014
    [38] WRIGHT W, KEITH, JR T G, DEWITT K J. Numerical analysis of a thermal deicer[R]. AIAA-92-0527, 1992.
    [39] CHAO D F. Numerical simulation of two-dimensional heat transfer in composite bodies with application to de-icing of aircraft components[D]. Toledo, US: University of Toledo, 1983.
    [40] MASIULANIEC K C. A numerical simulation of the full two-dimensional electrothermal de-icer pad[D]. Toledo, US: University of Toledo, 1987.
    [41] YASLIK A D, DEWITT K J, KEITH T G. Further developments in three-dimensional numerical simulation of electrothermal deicing systems[R]. AIAA-92-0528, 1992.
    [42] 刘重洋. 飞机电热防/除冰系统数值计算及实验研究[D]. 南京: 南京航空航天大学, 2020.

    LIU Chongyang. Numerical calculation and experimental study of aircraft electrothermal anti/de-icing system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. (in Chinese)
    [43] 陈龙,刘慧,张一术. 石墨烯涂层对直升机旋翼防/除冰组件传热的影响[J]. 复合材料学报,2021,38(1): 239-245. doi: 10.13801/j.cnki.fhclxb.20200513.001

    CHEN Long,LIU Hui,ZHANG Yishu. Effect of graphene coating on heat transfer of anti-/deicing component for helicopter rotor[J]. Acta Materiae Compositae Sinica,2021,38(1): 239-245. (in Chinese) doi: 10.13801/j.cnki.fhclxb.20200513.001
    [44] IBRAHIM Y,KEMPERS R,AMIRFAZLI A. 3D printed electro-thermal anti- or de-icing system for composite panels[J]. Cold Regions Science and Technology,2019,166(10): 102844.1-102844.10.
    [45] BUSCHHORN S T, LACHMAN N, GAVIN J, et al. Electrothermal icing protection of Aerosurfaces using conductive polymer nanocomposites[R]. AIAA-2013-1709, 2013.
    [46] BOGOSLOV E A,DANILAEV M P,MIKHAILOV S A,et al. Energy efficiency of an integral anti-ice system based on fluoroplastic films[J]. Journal of Engineering Physics and Thermophysics,2016,89(4): 815-820. doi: 10.1007/s10891-016-1441-5
    [47] 常士楠,侯雅琴,袁修干. 周期电加热控制律对除冰表面温度的影响[J]. 航空动力学报,2007,22(8): 1247-1251. doi: 10.3969/j.issn.1000-8055.2007.08.007

    CHANG Shinan,HOU Yaqin,YUAN Xiugan. Influence of periodic electro-heating pulse on deicing surface temperature[J]. Journal of Aerospace Power,2007,22(8): 1247-1251. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.08.007
    [48] 肖春华,林贵平,桂业伟,等. 冰脱落对电热除冰传热特性的影响研究[J]. 空气动力学学报,2012,30(4): 551-556. doi: 10.3969/j.issn.0258-1825.2012.04.021

    XIAO Chunhua,LIN Guiping,GUI Yewei,et al. Study on effect of ice shedding on heat transfer characteristics of electrothermal aircraft deicing[J]. Acta Aerodynamica Sinica,2012,30(4): 551-556. (in Chinese) doi: 10.3969/j.issn.0258-1825.2012.04.021
    [49] 谌广昌,纪双英,赵文明,等. 直升机旋翼除冰系统加热垫试验研究[J]. 航空工程进展,2019,10(2): 201-205. doi: 10.16615/j.cnki.1674-8190.2019.02.008

    CHEN Guangchang,JI Shuangying,ZHAO Wenming,et al. Experimental study on heating pad of helicopter rotor deicing system[J]. Advances in Aeronautical Science and Engineering,2019,10(2): 201-205. (in Chinese) doi: 10.16615/j.cnki.1674-8190.2019.02.008
    [50] 邹小玲. 直升机旋翼防除冰设计与分析[J]. 直升机技术, 2009, 159(3): 39-46.

    ZOU Xiaoling. The design and analysis of helicopter rotor anti-icing/deicing system [J]. Helicopter Technique, 2009, 159(3): 39-46. (in Chinese)
    [51] 吴斌,於二军,滕国飞,等. 飞机机翼电热除冰控制系统设计[J]. 山西电子技术,2018(2): 21-23. doi: 10.3969/j.issn.1674-4578.2018.02.007

    WU Bin,YU Erjun,TENG Guofei,et al. Design of electrothermal deicing control system for aircraft wing[J]. Shanxi Electronic Technology,2018(2): 21-23. (in Chinese) doi: 10.3969/j.issn.1674-4578.2018.02.007
    [52] AL-KHALIL K M, FERGUSON T W, PHILLIPS D M. A hybrid anti-icing ice protection system[R]. AIAA-97-0302, 1997.
    [53] 郭艳亮. 复合式除冰控制技术及试验研究[D]. 武汉: 华中科技大学, 2017.

    GUO Yanliang. The control technique and experimental research for aircraft hybrid deicing[D]. Wuhan: Huazhong University of Science and Technology, 2017. (in Chinese)
    [54] 郑春涛. 复合式除冰技术研究[D]. 武汉: 华中科技大学, 2016.

    ZHENG Chuntao. Researches on hybrid de-ice methods [D]. Wuhan: Huazhong University of Science and Technology, 2016. (in Chinese)
    [55] FORTIN G, ADOMOU M, PERRON J. Experimental study of hybrid anti-icing systems combining thermoelectric and hydrophobic coatings[M]. Montreal, Canada: SAE International, 2011.
    [56] STROBL T,STORM S,THOMPSON D,et al. Feasibility study of a hybrid ice protection system[J]. Journal of Aircraft,2015,52(6): 2064-2076. doi: 10.2514/1.C033161
    [57] CHEN L, ZHANG Y D, WU Q, et al. A novel anti/de-icing system combining heat expansion film and electric heating for helicopter rotor[C]// Proceedings of 2nd Advanced Information Technology, Electronic and Automation Control Conference. Piscataway, US: IEEE, 2017: 1072-1076.
    [58] 李斌. 飞机除冰/防冰液及除冰技术[J]. 清洗世界,2012,28(1): 26-31. doi: 10.3969/j.issn.1671-8909.2012.01.006

    LI Bin. Brief survey of deicing/anti-icing fluid and techniques for aircraft[J]. Cleaning World,2012,28(1): 26-31. (in Chinese) doi: 10.3969/j.issn.1671-8909.2012.01.006
    [59] SAE. Deicing/anti-icing fluid, aircraft, SAE Type Ⅰ: AMS 1424J[S]. Warrendale, Pennsylvania,US: SAE, 2009: 1-12.
    [60] SAE. Fluid, aircraft deicing/anti-icing, non-Newtonian (Pseudoplastic), SAE Types Ⅱ, Ⅲ, and Ⅳ: SAE AMS1428K[S]. Warrendale, Pennsylvania,US: SAE, 2018: 1-12.
    [61] COFFMAN,H. J. Helicopter rotor icing protection methods[J]. Journal of the American Helicopter Society,1987,32(2): 34-39. doi: 10.4050/JAHS.32.34
    [62] 赵芯,张亚博,苏正良,等. 非牛顿型飞机除冰/防冰液增稠体系及增稠机理研究[J]. 精细与专用化学品,2015,23(2): 9-12. doi: 10.3969/j.issn.1008-1100.2015.02.003

    ZHAO Xin,ZHANG Yabo,SU Zhengliang,et al. Study on thickening agent of the deicing/anti-icing fluid of no N-newtonian aircraft and thickening mechanism[J]. Fine and Specialty Chemicals,2015,23(2): 9-12. (in Chinese) doi: 10.3969/j.issn.1008-1100.2015.02.003
    [63] 吴海涛,彭华乔,张帆,等. 非牛顿型飞机除冰/防冰液黏度影响因素分析[J]. 精细与专用化学品,2017,25(1): 18-21. doi: 10.19482/j.cn11-3237.2017.01.03

    WU Haitao,PENG Huaqiao,ZHANG Fan,et al. Analysis on effective factors of non-newtonian de-icing/anti-icing fluids viscosity[J]. Fine and Specialty Chemicals,2017,25(1): 18-21. (in Chinese) doi: 10.19482/j.cn11-3237.2017.01.03
    [64] 王强,彭华乔,吴海涛,等. 飞机除冰液流变特性研究[J]. 应用化工,2016,45(4): 732-736. doi: 10.16581/j.cnki.issn1671-3206.20160115.049

    WANG Qiang,PENG Huaqiao,WU Haitao,et al. Study on rheological properties of deicing/anti-icing fluids[J]. Applied Chemical Industry,2016,45(4): 732-736. (in Chinese) doi: 10.16581/j.cnki.issn1671-3206.20160115.049
    [65] COFFMAN H J. Review of helicopter icing protection system[R]. AIAA-83-2529, 1983.
    [66] 高淑蓉,焦丽丽,易孟超,等. 疏水/超疏水表面防/除原理及其研究进展[J]. 空气动力学学报,2021,39(2): 151-160. doi: 10.7638/kqdlxxb-2020.0179

    GAO Shurong,JIAO Lili,YI Mengchao,et al. Mechanism and research progress of anti/de-icing using hydrophobic/superhydrophobic surfaces[J]. Acta Aerodynamica Sinica,2021,39(2): 151-160. (in Chinese) doi: 10.7638/kqdlxxb-2020.0179
    [67] VILLENEUVE E,BRASSARD J D,VOLAT C. Effect of various surface coatings on de-icing/anti-icing fluids aerodynamic and endurance time performances[J]. Aerospace,2019,6(10): 114-130. doi: 10.3390/aerospace6100114
    [68] ZHANG Z C,LUSI A,HU H Y,et al. An experimental study on the detrimental effects of deicing fluids on the performance of icephobic coatings for aircraft icing mitigation[J]. Aerospace Science and Technology,2021,119: 107090.1-107090.16. doi: 10.1016/j.ast.2021.107090
    [69] BLAHA B J, EVANICH P L. Pneumatic boot for helicopter rotor deicing [C]// Proceedings of Air Transportation And Safety. Hampton, US: Langley Research Center, 1981: 425-445.
    [70] 高郭池,李保良,丁丽,等. 气动除冰飞机结冰风洞试验技术[J]. 实验流体力学,2019,33(2): 95-101. doi: 10.11729/syltlx20180064

    GAO Guochi,LI Baoliang,DING Li,et al. Icing wind tunnel test technology for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics,2019,33(2): 95-101. (in Chinese) doi: 10.11729/syltlx20180064
    [71] PALACIOS J,WOLFE D,BAILEY M,et al. Ice testing of a centrifugally powered pneumatic deicing system for helicopter rotor blades[J]. Journal of the American Helicopter Society,2015,60(3): 1-12.
    [72] DRUY M D,SZEFI J T,PALACIOS J L. Full-scall testing of a centrifugally powered pneumatic de-icing system for helicopter rotor blades[J]. Journal of Aircraft,2017,54(1): 220-228. doi: 10.2514/1.C033965
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  395
  • HTML浏览量:  133
  • PDF量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-21
  • 网络出版日期:  2022-12-13

目录

    /

    返回文章
    返回