留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钝头前缘加工不确定性对亚声速压气机叶型气动性能的影响

王浩浩 高丽敏 杨光 黄萍 唐凯

王浩浩, 高丽敏, 杨光, 等. 钝头前缘加工不确定性对亚声速压气机叶型气动性能的影响[J]. 航空动力学报, 2024, 39(2):20220252 doi: 10.13224/j.cnki.jasp.20220252
引用本文: 王浩浩, 高丽敏, 杨光, 等. 钝头前缘加工不确定性对亚声速压气机叶型气动性能的影响[J]. 航空动力学报, 2024, 39(2):20220252 doi: 10.13224/j.cnki.jasp.20220252
WANG Haohao, GAO Limin, YANG Guang, et al. Influence of manufacturing uncertainty of blunt leading edge on aerodynamic performance of compressor blade[J]. Journal of Aerospace Power, 2024, 39(2):20220252 doi: 10.13224/j.cnki.jasp.20220252
Citation: WANG Haohao, GAO Limin, YANG Guang, et al. Influence of manufacturing uncertainty of blunt leading edge on aerodynamic performance of compressor blade[J]. Journal of Aerospace Power, 2024, 39(2):20220252 doi: 10.13224/j.cnki.jasp.20220252

钝头前缘加工不确定性对亚声速压气机叶型气动性能的影响

doi: 10.13224/j.cnki.jasp.20220252
基金项目: 国家自然科学基金面上项目(51790512); 西北工业大学博创基金(CX2021075)
详细信息
    作者简介:

    王浩浩(1995-),男,博士生,主要从事压气机叶片不确定性量化及鲁棒性优化设计研究。E-mail:wang2018.m@mail.nwpu.edu.cn

    通讯作者:

    高丽敏(1973-),女,教授、博士生导师,博士,主要从事叶轮机械气动热力学研究。E-mail:gaolm@nwpu.edu.cn

  • 中图分类号: V231.3

Influence of manufacturing uncertainty of blunt leading edge on aerodynamic performance of compressor blade

  • 摘要:

    为对压气机叶片前缘的精细化设计与制造提供有力参考,以某高亚声速压气机叶型为研究对象,基于非嵌入式多项式混沌方法,定量评估了钝头前缘加工不确定性对叶型气动性能的影响。结果表明:在全工况范围内,钝头前缘加工误差恶化了叶型的平均性能;在7°攻角下,叶型气动性能的波动幅度最大。在设计攻角下,钝头前缘的加工不确定性导致叶型平均损失增加18.7%,平均静压比降低1.2%。在7°攻角下,叶型总压损失系数的波动幅度是设计攻角下的4倍。根据叶型气动参数对钝头前缘加工误差的敏感性分析结果,发现两者呈现近线性关系。通过叶型流场的不确定分析可知,钝头前缘加工误差对前缘绕流影响显著,进而导致叶型吸力侧损失和尾迹掺混损失增大。分析了不同前缘加工公差下钝头前缘对叶型的不确定性影响,确定了前缘抛光的加工公差范围。

     

  • 图 1  叶片前缘抛光过程

    Figure 1.  Polishing process of leading edge

    图 2  钝头前缘加工不确定性建模

    Figure 2.  Machining uncertainty modeling for blade blunt leading edge

    图 3  NPU-A1 叶型

    Figure 3.  Schematic of NPU-A1 blade

    图 4  钝头前缘计算域网格

    Figure 4.  Computational grid of blunt leading edge

    图 5  总压损失系数的统计评估

    Figure 5.  Statistical evaluation of $ \omega $

    图 6  静压比统计评估

    Figure 6.  Statistical evaluation of $ \pi $

    图 7  叶型气动参数的相对增加量

    Figure 7.  Relative increase of blade aerodynamic parameters

    图 8  不同工况下,总压损失系数的概率分布

    Figure 8.  Probability distributions of $ \omega $ under different operating conditions

    图 9  不同工况下,静压比的概率分布

    Figure 9.  Probability distributions of $ \boldsymbol{\pi} $ under different operating conditions

    图 10  攻角为2.5°时等熵马赫数的统计评估

    Figure 10.  Statistical evaluation of Mais under attack angle of 2.5°

    图 11  攻角为7°时等熵马赫数的统计评估

    Figure 11.  Statistical evaluation of Mais under attack angle of 7°

    图 12  攻角为2.5°时马赫数分布比较

    Figure 12.  Comparisons of Mach number contours under attach angle of 2.5°

    图 13  攻角为7°时马赫数分布

    Figure 13.  Mach contours under attack angle of 7°

    图 14  攻角为2.5°, “过抛”程度$ \xi $对气动参数的影响

    Figure 14.  Influence of $ \xi $ on aerodynamic parameters under attack angle of 2.5°

    图 15  攻角为7°, “过抛”程度$ \xi $对气动参数的影响

    Figure 15.  Influence of $ \xi $ on aerodynamic parameters under attack angle of 7°

    图 16  叶型分区损失

    Figure 16.  Loss in different blade zones

    图 17  B0、B1和B2叶型的分区损失

    Figure 17.  Sub-region loss of the B0, B1 and B2 blades

    图 18  B0、B1和B2叶型的掺混损失

    Figure 18.  Mixing area region of the B0, B1 and B2 blades

    图 19  钝头前缘概率分布

    Figure 19.  Probability distributions of blunt leading edge

    图 20  不同攻角下,损失系数的频率直方图

    Figure 20.  Frequency histogram of loss coefficient under different attack angles

    图 21  不同攻角下损失系数的均值

    Figure 21.  Mean of loss coefficient under different attack angles

    表  1  几何参数

    Table  1.   Geometric parameters

    参数数值
    栅距/mm30.43
    弦长/mm69.94
    进气角/(°)44.8
    前缘半径/mm0.52
    出气角/(°)6.22
    下载: 导出CSV

    表  2  不同前缘加工公差

    Table  2.   Different tolerances of leading edge

    公差范围高斯分布
    T100.06$ \xi $~N (0.03, 0.01)
    T200.08$ \xi$~N (0.04, 0.013)
    T300.13$ \xi $~N (0.065, 0.02)
    下载: 导出CSV
  • [1] 杨冠华,高丽敏,王浩浩,等. 基于NURBS的扩压叶栅非对称前缘设计[J]. 航空动力学报,2021,36(3): 655-663. doi: 10.13224/j.cnki.jasp.2021.03.021

    YANG Guanhua,GAO Limin,WANG Haohao,et al. Asymmetric leading edge design of diffusion cascade based on NURBS[J]. Journal of Aerospace Power,2021,36(3): 655-663. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.03.021
    [2] 张明德,蔡汉水,谢乐,等. 航发叶片前后缘数控砂带磨削关键技术研究[J]. 机械科学与技术,2018,37(5): 797-803.

    ZHANG Mingde,CAI Hanshui,XIE Le,et al. Research on key technology of CNC abrasive belt grinding for aircraft engines blade edges[J]. Mechanical Science and Technology for Aerospace Engineering,2018,37(5): 797-803. (in Chinese)
    [3] 高丽敏,蔡宇桐,徐浩亮,等. 压气机叶片加工误差影响不确定分析[J]. 航空动力学报,2017,32(9): 2253-2259.

    GAO Limin,CAI Yutong,XU Haoliang,et al. Uncertainty analysis of machining error influence of compressor blade[J]. Journal of Aerospace Power,2017,32(9): 2253-2259. (in Chinese)
    [4] LANGE A, VOIGT M, VOGELER K, et al. Probabilistic CFD simulation of a high-pressure compressor stage taking manufacturing variability into account[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. Glasgow, UK: ASME, 2010: 617-628.
    [5] GOODHAND M N,MILLER R J,LUNG H W. The impact of geometric variation on compressor two-dimensional incidence range[J]. Journal of Turbomachinery,2015,137(2): 021007.1-021007.7.
    [6] 高丽敏,蔡宇桐,曾瑞慧,等. 叶片加工误差对压气机叶栅气动性能的影响[J]. 推进技术,2017,38(3): 525-531.

    GAO Limin,CAI Yutong,ZENG Ruihui,et al. Effects of blade machining error on compressor cascade aerodynamic performance[J]. Journal of Propulsion Technology,2017,38(3): 525-531. (in Chinese)
    [7] 高丽敏,蔡宇桐,郝燕平,等. 加工误差对压气机叶片气动性能影响试验研究[J]. 推进技术,2017,38(8): 1761-1766.

    GAO Limin,CAI Yutong,HAO Yanping,et al. Experimental investigation on aerodynamic performance of compressor blade considering manufacturing error[J]. Journal of Propulsion Technology,2017,38(8): 1761-1766. (in Chinese)
    [8] 刘佳鑫,于贤君,孟德君,等. 高压压气机出口级叶型加工偏差特征及其影响[J]. 航空学报,2021,42(2): 348-364.

    LIU Jiaxin,YU Xianjun,MENG Dejun,et al. State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage[J]. Acta Aeronautica et Astronautica Sinica,2021,42(2): 348-364. (in Chinese)
    [9] MA Chi,GAO Limin,WANG Haohao,et al. Influence of leading edge with real manufacturing error on aerodynamic performance of high subsonic compressor cascades[J]. Chinese Journal of Aeronautics,2021,34(6): 220-232. doi: 10.1016/j.cja.2020.08.018
    [10] ZHANG Qian,XU Shenren,YU Xianjun,et al. Nonlinear uncertainty quantification of the impact of geometric variability on compressor performance using an adjoint method[J]. Chinese Journal of Aeronautics,2022,35(2): 17-21. doi: 10.1016/j.cja.2021.06.007
    [11] REID L,URASEK D C. Experimental evaluation of the effects of a blunt leading edge on the performance of a transonic rotor[J]. Journal of Engineering for Power,1973,95(3): 199-204. doi: 10.1115/1.3445723
    [12] 蓝仁浩,黄云,陈贵林,等. 航空发动机叶片精密自适应砂带磨削技术及试验研究[J]. 航空制造技术,2018,61(15): 16-24.

    LAN Renhao,HUANG Yun,CHEN Guilin,et al,et al. Self-adaptive belt grinding technology and its experimental research on aero-engine blade[J]. Aeronautical Manufacturing Technology,2018,61(15): 16-24. (in Chinese)
    [13] 吴东,黄萍,姚若鹏,等. 叶型加工中特殊前缘形状试验研究[J]. 风机技术,2020,62(4): 29-35. doi: 10.16492/j.fjjs.2020.04.0005

    WU Dong,HUANG Ping,YAO Ruopeng,et al. Experimental investigation of special leading edge shapes in blade processing[J]. Chinese Journal of Turbomachinery,2020,62(4): 29-35. (in Chinese) doi: 10.16492/j.fjjs.2020.04.0005
    [14] GIEBMANNS A, SCHNELL R, STEINERT W, et al. Analyzing and optimizing geometrically degraded transonic fan blades by means of 2D and 3D simulations and cascade measurements[J]. Proceedings of the ASME Turbo Expo. Copenhagen, Denmark: ASME, 2012: 279-288.
    [15] HERGT A, KLINNER J, STEINERT W, et al. The effect of an eroded leading edge on the aerodynamic performance of a transonic fan blade cascade[J]. Journal of Turbomachinery 2014; 137(2). 021006-1-021006-11.
    [16] 李乐,刘火星,李鹏. 压气机叶片钝头前缘对边界层气动影响[J]. 推进技术,2018,39(2): 299-307.

    LI Le,LIU Huoxing,LI Peng. Aerodynamic influence of compressor blade with blunt leading edge on boundary layer performance[J]. Journal of Propulsion Technology,2018,39(2): 299-307. (in Chinese)
    [17] 中国航空工业总公司. 叶片叶型的标注、公差与叶身表面粗糙度: SAA HB 122.3. 4.3-1998[S]. 北京: 中国航空工业总公司, 1999: 1-47.
    [18] MA C, GAO L M, CAI Y T, et al. Robust optimization design of compressor blade considering machining error[R]. Charlotte, US: ASME Turbo Expo: Turbomachinery Technical Conference and Exposition, 2017.
    [19] 蔡宇桐,高丽敏,马驰,等. 基于NIPC的压气机叶片加工误差不确定性分析[J]. 工程热物理学报,2017,38(3): 490-497.

    CAI Yutong,GAO Limin,MA Chi,et al. Uncertainty quantification on compressor blade considering manufacturing error based on NIPC method[J]. Journal of Engineering Thermophysics,2017,38(3): 490-497. (in Chinese)
    [20] WIENER N. The homogeneous chaos[J]. American Journal of Mathematics,1938,60(4): 897-936. doi: 10.2307/2371268
    [21] XIU Dongbin,KARNIADAKIS G E. The Wiener: askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing,2002,24(2): 619-644. doi: 10.1137/S1064827501387826
    [22] 高丽敏,郭彦超,李瑞宇,等. 高亚声速下附面层抽吸控制压气机叶栅流动分离的研究[J]. 推进技术,2022,43(4): 143-152.

    GAO Limin,GUO Yanchao,LI Ruiyu,et al. Flow separation of compressor cascade controlled by boundary layer suction at high subsonic velocity[J]. Journal of Propulsion Technology,2022,43(4): 143-152. (in Chinese)
    [23] ZHANG J,LI S P,BAO N S,et al. A robust design approach to determination of tolerances of mechanical products[J]. CIRP Annals,2010,59(1): 195-198. doi: 10.1016/j.cirp.2010.03.099
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  29
  • HTML浏览量:  5
  • PDF量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 网络出版日期:  2023-09-18

目录

    /

    返回文章
    返回