Influence of manufacturing uncertainty of blunt leading edge on aerodynamic performance of compressor blade
-
摘要:
为对压气机叶片前缘的精细化设计与制造提供有力参考,以某高亚声速压气机叶型为研究对象,基于非嵌入式多项式混沌方法,定量评估了钝头前缘加工不确定性对叶型气动性能的影响。结果表明:在全工况范围内,钝头前缘加工误差恶化了叶型的平均性能;在7°攻角下,叶型气动性能的波动幅度最大。在设计攻角下,钝头前缘的加工不确定性导致叶型平均损失增加18.7%,平均静压比降低1.2%。在7°攻角下,叶型总压损失系数的波动幅度是设计攻角下的4倍。根据叶型气动参数对钝头前缘加工误差的敏感性分析结果,发现两者呈现近线性关系。通过叶型流场的不确定分析可知,钝头前缘加工误差对前缘绕流影响显著,进而导致叶型吸力侧损失和尾迹掺混损失增大。分析了不同前缘加工公差下钝头前缘对叶型的不确定性影响,确定了前缘抛光的加工公差范围。
Abstract:In order to provide a strong reference for the fine design and manufacturing of leading edge of the compressor blades, a high subsonic compressor blade was used as the research object. Based on the non-intrusive polynomial chaos method, the uncertainty impacts of the machining error of blunt leading edge on the blade performance were quantitatively evaluated. Results showed that the blunt leading edge deteriorated the mean performance of the blade in the full range of working conditions. Under incidence of 7°, the fluctuation range of the blade performance was the largest. Under the design incidence, the machining uncertainty of the blunt leading edge caused the increase of mean loss by 18.7% and the decrease of mean pressure ratio by 1.2%. Under incidence of 7°, the fluctuation range of the total pressure loss coefficient of the blade was 4 times that of the design incidence condition. According to the results of sensitivity analysis, it can be found that the aerodynamic parameters and manufacturing error of blunt leading edge showed an approximate linear relationship. Through the uncertainty analysis of the blade flow field, the manufacturing error of blunt leading edge had a significant effect on the flow conditions near leading edge, which led to the increase of suction side loss and wake mixing loss. The influence of the blunt leading edge on the blade under different leading edge machining tolerances was analyzed, and the machining tolerance of the leading edge polishing was determined.
-
表 1 几何参数
Table 1. Geometric parameters
参数 数值 栅距/mm 30.43 弦长/mm 69.94 进气角/(°) 44.8 前缘半径/mm 0.52 出气角/(°) 6.22 表 2 不同前缘加工公差
Table 2. Different tolerances of leading edge
公差 范围 高斯分布 T1 0~0.06 $ \xi $~N (0.03, 0.01) T2 0~0.08 $ \xi$~N (0.04, 0.013) T3 0~0.13 $ \xi $~N (0.065, 0.02) -
[1] 杨冠华,高丽敏,王浩浩,等. 基于NURBS的扩压叶栅非对称前缘设计[J]. 航空动力学报,2021,36(3): 655-663. doi: 10.13224/j.cnki.jasp.2021.03.021YANG Guanhua,GAO Limin,WANG Haohao,et al. Asymmetric leading edge design of diffusion cascade based on NURBS[J]. Journal of Aerospace Power,2021,36(3): 655-663. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.03.021 [2] 张明德,蔡汉水,谢乐,等. 航发叶片前后缘数控砂带磨削关键技术研究[J]. 机械科学与技术,2018,37(5): 797-803.ZHANG Mingde,CAI Hanshui,XIE Le,et al. Research on key technology of CNC abrasive belt grinding for aircraft engines blade edges[J]. Mechanical Science and Technology for Aerospace Engineering,2018,37(5): 797-803. (in Chinese) [3] 高丽敏,蔡宇桐,徐浩亮,等. 压气机叶片加工误差影响不确定分析[J]. 航空动力学报,2017,32(9): 2253-2259.GAO Limin,CAI Yutong,XU Haoliang,et al. Uncertainty analysis of machining error influence of compressor blade[J]. Journal of Aerospace Power,2017,32(9): 2253-2259. (in Chinese) [4] LANGE A, VOIGT M, VOGELER K, et al. Probabilistic CFD simulation of a high-pressure compressor stage taking manufacturing variability into account[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. Glasgow, UK: ASME, 2010: 617-628. [5] GOODHAND M N,MILLER R J,LUNG H W. The impact of geometric variation on compressor two-dimensional incidence range[J]. Journal of Turbomachinery,2015,137(2): 021007.1-021007.7. [6] 高丽敏,蔡宇桐,曾瑞慧,等. 叶片加工误差对压气机叶栅气动性能的影响[J]. 推进技术,2017,38(3): 525-531.GAO Limin,CAI Yutong,ZENG Ruihui,et al. Effects of blade machining error on compressor cascade aerodynamic performance[J]. Journal of Propulsion Technology,2017,38(3): 525-531. (in Chinese) [7] 高丽敏,蔡宇桐,郝燕平,等. 加工误差对压气机叶片气动性能影响试验研究[J]. 推进技术,2017,38(8): 1761-1766.GAO Limin,CAI Yutong,HAO Yanping,et al. Experimental investigation on aerodynamic performance of compressor blade considering manufacturing error[J]. Journal of Propulsion Technology,2017,38(8): 1761-1766. (in Chinese) [8] 刘佳鑫,于贤君,孟德君,等. 高压压气机出口级叶型加工偏差特征及其影响[J]. 航空学报,2021,42(2): 348-364.LIU Jiaxin,YU Xianjun,MENG Dejun,et al. State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage[J]. Acta Aeronautica et Astronautica Sinica,2021,42(2): 348-364. (in Chinese) [9] MA Chi,GAO Limin,WANG Haohao,et al. Influence of leading edge with real manufacturing error on aerodynamic performance of high subsonic compressor cascades[J]. Chinese Journal of Aeronautics,2021,34(6): 220-232. doi: 10.1016/j.cja.2020.08.018 [10] ZHANG Qian,XU Shenren,YU Xianjun,et al. Nonlinear uncertainty quantification of the impact of geometric variability on compressor performance using an adjoint method[J]. Chinese Journal of Aeronautics,2022,35(2): 17-21. doi: 10.1016/j.cja.2021.06.007 [11] REID L,URASEK D C. Experimental evaluation of the effects of a blunt leading edge on the performance of a transonic rotor[J]. Journal of Engineering for Power,1973,95(3): 199-204. doi: 10.1115/1.3445723 [12] 蓝仁浩,黄云,陈贵林,等. 航空发动机叶片精密自适应砂带磨削技术及试验研究[J]. 航空制造技术,2018,61(15): 16-24.LAN Renhao,HUANG Yun,CHEN Guilin,et al,et al. Self-adaptive belt grinding technology and its experimental research on aero-engine blade[J]. Aeronautical Manufacturing Technology,2018,61(15): 16-24. (in Chinese) [13] 吴东,黄萍,姚若鹏,等. 叶型加工中特殊前缘形状试验研究[J]. 风机技术,2020,62(4): 29-35. doi: 10.16492/j.fjjs.2020.04.0005WU Dong,HUANG Ping,YAO Ruopeng,et al. Experimental investigation of special leading edge shapes in blade processing[J]. Chinese Journal of Turbomachinery,2020,62(4): 29-35. (in Chinese) doi: 10.16492/j.fjjs.2020.04.0005 [14] GIEBMANNS A, SCHNELL R, STEINERT W, et al. Analyzing and optimizing geometrically degraded transonic fan blades by means of 2D and 3D simulations and cascade measurements[J]. Proceedings of the ASME Turbo Expo. Copenhagen, Denmark: ASME, 2012: 279-288. [15] HERGT A, KLINNER J, STEINERT W, et al. The effect of an eroded leading edge on the aerodynamic performance of a transonic fan blade cascade[J]. Journal of Turbomachinery 2014; 137(2). 021006-1-021006-11. [16] 李乐,刘火星,李鹏. 压气机叶片钝头前缘对边界层气动影响[J]. 推进技术,2018,39(2): 299-307.LI Le,LIU Huoxing,LI Peng. Aerodynamic influence of compressor blade with blunt leading edge on boundary layer performance[J]. Journal of Propulsion Technology,2018,39(2): 299-307. (in Chinese) [17] 中国航空工业总公司. 叶片叶型的标注、公差与叶身表面粗糙度: SAA HB 122.3. 4.3-1998[S]. 北京: 中国航空工业总公司, 1999: 1-47. [18] MA C, GAO L M, CAI Y T, et al. Robust optimization design of compressor blade considering machining error[R]. Charlotte, US: ASME Turbo Expo: Turbomachinery Technical Conference and Exposition, 2017. [19] 蔡宇桐,高丽敏,马驰,等. 基于NIPC的压气机叶片加工误差不确定性分析[J]. 工程热物理学报,2017,38(3): 490-497.CAI Yutong,GAO Limin,MA Chi,et al. Uncertainty quantification on compressor blade considering manufacturing error based on NIPC method[J]. Journal of Engineering Thermophysics,2017,38(3): 490-497. (in Chinese) [20] WIENER N. The homogeneous chaos[J]. American Journal of Mathematics,1938,60(4): 897-936. doi: 10.2307/2371268 [21] XIU Dongbin,KARNIADAKIS G E. The Wiener: askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing,2002,24(2): 619-644. doi: 10.1137/S1064827501387826 [22] 高丽敏,郭彦超,李瑞宇,等. 高亚声速下附面层抽吸控制压气机叶栅流动分离的研究[J]. 推进技术,2022,43(4): 143-152.GAO Limin,GUO Yanchao,LI Ruiyu,et al. Flow separation of compressor cascade controlled by boundary layer suction at high subsonic velocity[J]. Journal of Propulsion Technology,2022,43(4): 143-152. (in Chinese) [23] ZHANG J,LI S P,BAO N S,et al. A robust design approach to determination of tolerances of mechanical products[J]. CIRP Annals,2010,59(1): 195-198. doi: 10.1016/j.cirp.2010.03.099 -