留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机转/静子加筋调频设计方法

范雨 钱鑫 吴亚光 陈璐璐 张辉

范雨, 钱鑫, 吴亚光, 等. 航空发动机转/静子加筋调频设计方法[J]. 航空动力学报, 2022, 37(11):2376-2387 doi: 10.13224/j.cnki.jasp.20220258
引用本文: 范雨, 钱鑫, 吴亚光, 等. 航空发动机转/静子加筋调频设计方法[J]. 航空动力学报, 2022, 37(11):2376-2387 doi: 10.13224/j.cnki.jasp.20220258
FAN Yu, QIAN Xin, WU Yaguang, et al. Design approach of stiffeners for frequency shifting of rotors and stators in aero-engine[J]. Journal of Aerospace Power, 2022, 37(11):2376-2387 doi: 10.13224/j.cnki.jasp.20220258
Citation: FAN Yu, QIAN Xin, WU Yaguang, et al. Design approach of stiffeners for frequency shifting of rotors and stators in aero-engine[J]. Journal of Aerospace Power, 2022, 37(11):2376-2387 doi: 10.13224/j.cnki.jasp.20220258

航空发动机转/静子加筋调频设计方法

doi: 10.13224/j.cnki.jasp.20220258
基金项目: 国家科技重大专项(2017-Ⅳ-0002-0039,J2019-Ⅳ-0023-0091); 航空科学基金(2019ZB051002);
先进航空动力创新工作站(HKCX2020-02-013,HKCX2020-02-016)
详细信息
    作者简介:

    范雨(1987-),男,副教授、博士生导师,博士,主要从事智能结构动力学及振动控制等研究

    通讯作者:

    吴亚光(1990-),男,助理研究员,博士,主要从事航空发动机薄壁结构的振动控制研究。E-mail:yaguangwu@buaa.edu.cn

  • 中图分类号: V231.92

Design approach of stiffeners for frequency shifting of rotors and stators in aero-engine

  • 摘要:

    为了解决转子叶片/叶鼓系统与静子在模态频率接近且具有相同节径数时可能发生的流致转静子耦合振动问题,提出了一种基于位移与应变能密度分布的正向加筋调频设计方法,为结构调频设计提供了理论依据。该方法适用于有限元模型,且通过一次模态计算即可初步判断加筋区域,显著缩短设计周期。以提高安全工作裕度为目标,使用该方法对某型发动机增压级转/静子进行加筋调频设计,并探究了加强筋的结构参数对转/静子模态特性的影响。通过加筋设计,该型增压级转/静子危险模态下的共振裕度从3.47%提高到10.56%。该方法具有良好的通用性,同样适用于其他型号发动机的结构加筋调频设计。

     

  • 图 1  加筋对模态频率影响初步判断流程图

    Figure 1.  Preliminary judgment flow chart of the effect of stiffening on modal frequency

    图 2  简易悬臂梁有限元模型

    Figure 2.  Finite element model of simple cantilever beam

    图 3  简易悬臂梁典型模态振型与应变能密度分布

    Figure 3.  Modal shapes and strain energy density distribution of typical modes of simple cantilever beam

    图 4  简易悬臂梁不同位置加筋有限元模型

    Figure 4.  Finite element models of simple cantilever beam stiffened at different positions

    图 5  增压级静子与转子单扇区有限元模型

    Figure 5.  Single sector finite element models of stator and rotor of turbocharged stage

    图 6  3节径下转/静子波速

    Figure 6.  Rotor and stator wavelet velocities at 3 nodal diameters

    图 7  3节径下转/静子危险模态振型

    Figure 7.  Dangerous modal shapes of rotor and stator at 3 nodal diameters

    图 8  转/静子加筋位置

    Figure 8.  Stiffened positions of rotor and stator

    图 9  静子加筋位置位移与应变能密度分布

    Figure 9.  Distributions of the displacement and strain energy density of stiffened positions of stator

    图 10  转子加筋位置位移与应变能密度分布

    Figure 10.  Distributions of the displacement and strain energy density of stiffened positions of rotor

    图 11  转/静子加筋后有限元模型

    Figure 11.  Finite element models of stiffened stator and rotor

    图 12  3节径下转/静子加筋后危险模态振型

    Figure 12.  Dangerous modal shapes of stiffened rotor and stator at 3 nodal diameters

    图 13  筋高度与静子模态频率关系曲线

    Figure 13.  Relation curve between the height of stiffener and the modal frequency of stator

    图 14  加强筋几何参数与转子模态频率关系

    Figure 14.  Relation curves between the geometric parameters of stiffener and the modal frequency of stator

    图 15  加筋前后3节径转/静子波速及共振裕度示意图

    Figure 15.  Schematic diagram of rotor and stator wavelet velocities and resonance margins before and after stiffened at 3 nodal diameters

    表  1  悬臂梁不同位置加筋后模态频率变化情况

    Table  1.   Modal frequency variation of cantilever beam stiffened at different positions

    阶数加筋前模态
    频率/Hz
    固支端加筋模态
    频率/Hz
    自由端加筋模态
    频率/Hz
    12.7893.0672.499
    213.53813.98012.140
    317.40019.08616.143
    430.30731.75527.795
    548.44252.96245.706
    675.97578.43570.963
    791.97396.46586.555
    894.179102.4189.432
    9128.24129.68120.05
    10154.13164.43148.00
    下载: 导出CSV

    表  2  转子模态计算转速点

    Table  2.   Modal calculation speed points of rotor

    相对转速物理转速/(r/min)相对转速物理转速/(r/min)
    000.612500
    0.104000.712900
    0.208000.803300
    0.3912000.933800
    0.4916000.984000
    0.5920001.004100
    下载: 导出CSV

    表  3  静子危险模态加筋位置平均位移与应变能密度

    Table  3.   Mean displacement and strain energy density of the stiffener positions in danger mode of stator

    参数数值
    节径3
    阶数19
    模态频率/Hz783.196
    $ {U_{{\text{c}}1}} $/mm7.459
    $ {U_{{\text{c}}2}} $/mm5.26
    $ {U_{{\text{c}}3}} $/mm3.26
    $ {D}_{\mathrm{s},\mathrm{c}1} $/$ (\mathrm{N}/\text{m}{\text{m}}^{2}) $6.07
    $ {D}_{\mathrm{s},\mathrm{c}2} $/$ (\mathrm{N}/\text{m}{\text{m}}^{2}) $6.95
    $ {D}_{\mathrm{s},\mathrm{c}3} $/$ (\mathrm{N}/\text{m}{\text{m}}^{2}) $2.30
    下载: 导出CSV

    表  4  转子危险模态加筋位置平均位移与应变能密度

    Table  4.   Mean displacement and strain energy density of the stiffener positions in danger mode of rotor

    参数数值
    节径3
    阶数25
    模态频率/Hz1018.5
    $ {U_{{\text{d}}1}} $/mm0.164
    $ {U_{{\text{d}}2}} $/mm0.265
    $ {U_{{\text{d}}3}} $/mm0.086
    $ {D}_{\mathrm{s},\mathrm{d}1} $/1010 $(\mathrm{N}/\text{m}{\text{m} }^{2})$6.05
    $ {D}_{\mathrm{s},\mathrm{d}2} $/1010 $ (\mathrm{N}/\text{m}{\text{m}}^{2}) $1.35
    $ {D}_{\mathrm{s},\mathrm{d}3} $/1010 $ (\mathrm{N}/\text{m}{\text{m}}^{2}) $12.4
    下载: 导出CSV

    表  5  加筋前后转/静子危险模态频率及共振裕度对比

    Table  5.   Comparison of mode frequencies of rotor and stator dangerous modes and resonance marginbefore and after stiffened

    工况静子模态
    频率/Hz
    转子模态
    频率/Hz
    共振裕度/%
    加筋前783.1961018.53.47
    加筋后772.1931042.77.58
    下载: 导出CSV

    表  6  更改加筋位置后转/静子危险模态频率及共振裕度

    Table  6.   Comparison of mode frequencies of rotor and stator dangerous modes and resonance margin after changing stiffened positions

    工况静子模态
    频率/Hz
    转子模态
    频率/Hz
    共振裕度/%
    加筋前783.1961018.53.47
    加筋后780.6971007.32.43
    下载: 导出CSV

    表  7  加强筋不同高度对静子危险模态频率影响

    Table  7.   Influence of different height of stiffener on frequency of stator dangerous mode

    高度/mm加筋后模态频率变化率/%
    2−0.092
    4−0.279
    6−0.506
    8−0.762
    10−1.10
    12−1.40
    14−1.73
    16−2.08
    18−2.43
    20−2.79
    下载: 导出CSV

    表  8  加强筋不同宽度对静子危险模态频率影响

    Table  8.   Influence of different widths of stiffener on frequency of stator dangerous mode

    高度/mm宽度/mm模态频率变化率/%
    1027.0−1.10
    2013.5−1.66
    27.0−2.49
    下载: 导出CSV

    表  9  加强筋不同高度对转子危险模态频率影响

    Table  9.   Influence of different heights of stiffener on frequency of rotor dangerous mode

    高度/mm加筋后模态频率变化率/%
    21.38
    41.83
    62.08
    82.25
    102.37
    122.47
    142.55
    162.62
    182.68
    202.74
    下载: 导出CSV

    表  10  加强筋不同宽度对转子危险模态频率影响

    Table  10.   Influence of different widths of stiffener on frequency of stator dangerous mode

    宽度/mm加筋后模态频率变化率/%
    2.570.15
    5.140.43
    7.710.87
    10.281.34
    12.851.85
    15.422.32
    17.992.74
    下载: 导出CSV
  • [1] PAPADAKIS L,HAUSER C. Experimental and computational appraisal of the shape accuracy of a thin-walled virole aero-engine casing manufactured by means of laser metal deposition[J]. Production Engineering,2017,11: 389-399. doi: 10.1007/s11740-017-0746-3
    [2] 漆文凯,王向辉. 基于转静子耦合的组合压气机动力特性分析[J]. 航空发动机,2014,40(4): 46-50. doi: 10.13477/j.cnki.aeroengine.2014.04.009

    QI Wenkai,WANG Xianghui. Analysis on dynamic characteristics of combined compressor based on coupling of rotor and stator[J]. Aeroengine,2014,40(4): 46-50. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2014.04.009
    [3] 马英群. 基于结构声强可视化的航空发动机转子-支承-机匣耦合系统振动能量传递特性研究[D]. 北京: 中国科学院大学, 2020.

    MA Yingqun. Investigation on vibration energy transmission characteristics of aero-engine rotor-support-casing coupling system based on visualization of structural acoustic intensity[D]. Beijing: Chinses Academy of Sciences, 2020. (in Chinese)
    [4] MARSHALL J. A review of aeroelasticity methods with emphasis on turbomachinery applications[J]. Journal of Fluids and Structures,1996,10(3): 237-267.
    [5] CLARK S T, KIELB R E, HALL K C. Developing a reduced-order model to understand non-synchronous vibration (NSV) in turbomachinery[R]. Copenhagen, Denmark: ASME Turbo Expo: Turbine Technical Conference and Exposition, 2012.
    [6] BRANDSTETTER,CHRISTOPH,JUENGST,et al. Measurements of radial vortices, spill forward, and vortex breakdown in a transonic compressor[J]. Journal of Turbomachinery,2018,140(6): 1-14.
    [7] STAPELFELDT S,BRANDSTETTER C. Non-synchronous vibration in axial compressors: lock-in mechanism and semi-analytical model[J]. Journal of Sound and Vibration,2020,488: 115649.1-115649.20.
    [8] LEGRAND M,PIERRE C,CARTRAUD P,et al. Two-dimensional modeling of an aircraft engine structural bladed disk-casing modal interaction[J]. Journal of Sound and Vibration,2009,319(1/2): 366-391.
    [9] LEGRAND M,BATAILLY A,MAGNAIN B,et al. Full three-dimensional investigation of structural contact interactions in turbomachines[J]. Journal of Sound and Vibration,2012,331(11): 2578-2601. doi: 10.1016/j.jsv.2012.01.017
    [10] 王俨剀,王理,廖明夫,等. 双转子发动机转子-机匣碰摩振动特征研究[J]. 机械科学与技术,2014,33(4): 614-620. doi: 10.13433/j.cnki.1003-8728.2014.04.022

    WANG Yankai,WANG Li,LIAO Mingfu,et al. Exploring vibration characteristics of dual-rotor engine’s rotor-to-case rub-impact[J]. Mechanical Science and Technology for Aerospace Engineering,2014,33(4): 614-620. (in Chinese) doi: 10.13433/j.cnki.1003-8728.2014.04.022
    [11] MA Hui,LU Yang,WU Zhiyuan,et al. Vibration response analysis of a rotational shaft-disk-blade system with blade-tip rubbing[J]. International Journal of Mechanical Sciences,2016,107: 110-125. doi: 10.1016/j.ijmecsci.2015.12.026
    [12] HONG Jie,YU Pingchao,MA Yanhong,et al. Investigation on nonlinear lateral-torsional coupled vibration of a rotor system with substantial unbalance[J]. Chinese Journal of Aeronautics,2020,33(6): 1642-1660. doi: 10.1016/j.cja.2020.02.023
    [13] SCHMIECHEN P. Travelling wave speed coincidence[D]. London,UK: Technology and Medicine University of London, 1997.
    [14] SALVAT N,BATAILLY A,LEGRAND M. Two-dimensional modeling of unilateral contact-induced shaft processional motions in bladed-disk/casing systems[J]. International Journal of Non-Linear Mechanics,2016,78(4): 90-104.
    [15] 付才高, 郑大平, 欧圆霞, 等.《航空发动机设计手册》: 第19册 转子动力学及整机振动[M]. 北京: 航空工业出版社, 2000.
    [16] 米大海,杨睿,周亮,等. 以频率为目标的加筋平板结构优化设计研究[J]. 机械强度,2013,35(2): 179-182.

    MI Dahai,YANG Rui,ZHOU Liang,et al. Structural frequency optimal design of stiffened plate[J]. Journal of Mechanical Strength,2013,35(2): 179-182. (in Chinese)
    [17] PENG S,KAPANIA R K,DONG C. Finite element approach to the static, vibration and buckling analysis of curvilinearly stiffened plates[J]. AIAA Journal,2015,53(5): 1319-1335.
    [18] 刘双燕,涂玉倩,苗应刚,等. 筋的截面形状对薄壁结构振动疲劳性能的影响[J]. 航空工程进展,2017,8(2): 190-198.

    LIU Shuangyan,TU Yuqian,MIAO Yinggang,et al. Effects of stiffeners’ cross section shape on thin wall structures’ vibration fatigue property[J]. Advances in Aeronautical Science and Engineering,2017,8(2): 190-198. (in Chinese)
    [19] 邓晓龙,许敏,陈剑,等. 发动机缸体固有频率对加强筋厚度的灵敏度分析[J]. 内燃机工程,2007,28(2): 68-71. doi: 10.3969/j.issn.1000-0925.2007.02.017

    DENG Xiaolong,XU Min,CHEN Jian,et al. Analysis of sensitivity of natural frequency to the rib thickness of engine cylinder block[J]. Chinese Internal Combustion Engine Engineering,2007,28(2): 68-71. (in Chinese) doi: 10.3969/j.issn.1000-0925.2007.02.017
    [20] OBIED H H,SHAREEF M M S. Free vibration analysis of stiffened cylinder shell[J]. International Journal of Energy and Environment,2015,6(3): 273-286.
    [21] LIU Z S,HANSEN J S,OGUAMANAM D C D. Eigenvalue sensitivity analysis of stiffened plates with respect to the location of stiffeners[J]. Structural optimization,1998,16(2/3): 155-161.
    [22] 宋军强,汤丽丽,潘慕绚,等. 航空发动机分布式控制拓扑结构优化方法[J]. 航空动力学报,2016,31(6): 1435-1440. doi: 10.13224/j.cnki.jasp.2016.06.020

    SONG Junqiang,TANG Lili,PAN Muxuan,et al. Aero-engine distributed control system topology optimization method[J]. Journal of Aerospace Power,2016,31(6): 1435-1440. (in Chinese) doi: 10.13224/j.cnki.jasp.2016.06.020
    [23] 李超,金福艺,张卫浩. 航空发动机转子结构布局优化设计方法[J]. 北京航空航天大学学报,2019,45(2): 266-276.

    LI Chao,JIN Fuyi,ZHANG Weihao. Optimized design method of aero-engine rotor structure layout[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(2): 266-276. (in Chinese)
    [24] 陈鼎欣, 简卫斌, 邓敬亮. 航空发动机整体叶盘结构刚度的多目标优化[J]. 航空发动机, 2019, 45(5): 31-35.

    CHEN Dingxin, JIAN Weibin, DENG Jingliang. Multi-objective optimization of structural stiffness of aeroengine multistage-blisk[J]. Aeroengine, 2019, 45(5): 31-35. (in Chinese)
    [25] 倪振华. 振动力学[M]. 西安: 西安交通大学出版社, 1989.
  • 加载中
图(16) / 表(10)
计量
  • 文章访问数:  233
  • HTML浏览量:  94
  • PDF量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-27
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回