留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桨间距对某型共轴对转螺旋桨气动性能的影响

汤斯佳 曹德松 闫文辉 王雪晨 邓佳子

汤斯佳, 曹德松, 闫文辉, 等. 桨间距对某型共轴对转螺旋桨气动性能的影响[J]. 航空动力学报, 2023, 38(3):709-716 doi: 10.13224/j.cnki.jasp.20220464
引用本文: 汤斯佳, 曹德松, 闫文辉, 等. 桨间距对某型共轴对转螺旋桨气动性能的影响[J]. 航空动力学报, 2023, 38(3):709-716 doi: 10.13224/j.cnki.jasp.20220464
TANG Sijia, CAO Desong, YAN Wenhui, et al. Stage spacing on aerodynamic performance of a certain type of coaxial contra rotating propeller[J]. Journal of Aerospace Power, 2023, 38(3):709-716 doi: 10.13224/j.cnki.jasp.20220464
Citation: TANG Sijia, CAO Desong, YAN Wenhui, et al. Stage spacing on aerodynamic performance of a certain type of coaxial contra rotating propeller[J]. Journal of Aerospace Power, 2023, 38(3):709-716 doi: 10.13224/j.cnki.jasp.20220464

桨间距对某型共轴对转螺旋桨气动性能的影响

doi: 10.13224/j.cnki.jasp.20220464
基金项目: 先进航空发动机创新工作站项目(HKCX2020-02-024); 装发预研航空动力基金(6141B09050397)
详细信息
    作者简介:

    汤斯佳(1984-),男,高级工程师,学士,主要从事螺旋桨技术研究

    通讯作者:

    闫文辉(1979-),男,高级工程师,博士,主要从事航空推进技术、湍流模型研究。E-mail:abuaa@163.com

  • 中图分类号: V275

Stage spacing on aerodynamic performance of a certain type of coaxial contra rotating propeller

  • 摘要:

    为掌握共轴对转螺旋桨的桨间气动干扰规律,降低桨间气动干扰强度,提升共轴对转螺旋桨的气动性能,基于非定常雷诺平均Navier-Stocks方程耦合湍流模型的计算方法,并使用了滑移网格技术,研究了4种不同桨间距的6×6构型对转螺旋桨的桨间气动干扰对其气动性能的影响,桨间距选择了4种不同方案。研究结果表明:在4种不同的轴向桨间距中,当桨间距为0.25倍螺旋桨直径时,共轴对转螺旋桨的平均推进效率最高,并且气动干扰导致的效率脉动幅度较小;随着桨间距的增大,前、后排桨受到的气动干扰强度都会减小,相比于后桨,前桨因气动干扰造成的脉动对桨间距更加敏感。可见共轴对转螺旋桨的桨间距会对螺旋桨的气动干扰,及气动性能产生较为明显的影响,在设计共轴对转螺旋桨时选择合适的桨间距,有利于提高螺旋桨气动性能。

     

  • 图 1  不同角度来流下流线图

    Figure 1.  Streamlines at different inflow angles

    图 2  拉力系数和功率系数的计算值与实验数据对比

    Figure 2.  Comparison of thrust coefficient and power coefficient between the calculation and experiment

    图 3  不同桨间距的共轴对转螺旋桨示意图

    Figure 3.  Coaxial contra rotating propeller with different stage spacings

    图 4  不同网格数量下推进效率变化(δ=0.2D

    Figure 4.  Propulsion efficiency with different meshes (δ=0.2D

    图 5  不同时刻下共轴对转桨涡量分布云图(δ=0.35D

    Figure 5.  Vorticity distribution of coaxial contra rotating propeller at different times (δ=0.35D

    图 6  共轴对转桨平均推进效率随着桨间距的变化

    Figure 6.  Variation of averaged propulsion efficiency of coaxial contra rotating propeller with stage spacing

    图 7  共轴对转螺旋桨拉力系数随时间的变化情况

    Figure 7.  Variation of thrust coefficient of coaxial contra rotating propeller with time

    图 8  拉力系数和功率系数的脉动幅值随桨间距变化

    Figure 8.  Variation of fluctuation of thrust coefficient and power coefficient with stage spacing

    图 9  不同桨间距下瞬时推进效率随时间变化

    Figure 9.  Variation of instantaneous propulsion efficiency of contra rotating propeller with time under different stage spacing

    图 10  效率脉动量随桨间距的变化

    Figure 10.  Variation of fluctuations of efficiency with stage spacing

  • [1] BREHM C,BARAD M F,KIRIS C C. Development of immersed boundary computational aeroacoustic prediction capabilities for open-rotor noise[J]. Journal of Computational Physics,2019,388(1): 690-716.
    [2] EBUS T,DIETZ M,HUPFER A. Experimental and numerical studies on small contra-rotating electrical ducted fan engines[J]. CEAS Aeronautical Journal,2021,12: 559-571. doi: 10.1007/s13272-021-00517-7
    [3] TANG J,WANG X,DUAN D,et al. Optimisation and analysis of efficiency for contra-rotating propellers for high-altitude airships[J]. Aeronautical Journal,2019,123(1263): 706-726. doi: 10.1017/aer.2019.14
    [4] 陈博,贺象. 国外桨扇技术发展概况[J]. 燃气涡轮试验与研究,2020,33(1): 54-58. doi: 10.3969/j.issn.1672-2620.2020.01.010

    CHEN Bo,HE Xiang. Development of the propfan technology abroad[J]. Gas Turbine Experiment and Research,2020,33(1): 54-58. (in Chinese) doi: 10.3969/j.issn.1672-2620.2020.01.010
    [5] 闫文辉,汤斯佳,王奉明,等. 共轴对转螺旋桨的非定常气动干扰[J]. 航空动力学报,2021,36(7): 1398-1405. doi: 10.13224/j.cnki.jasp.20210051

    YAN Wenhui,TANG Sijia,WANG Fengming,et al. Unsteady aerodynamic interactions of contra rotating propeller[J]. Journal of Aerospace Power,2021,36(7): 1398-1405. (in Chinese) doi: 10.13224/j.cnki.jasp.20210051
    [6] 王靖元,单鹏,周亦成. 浸入式贴体网格边界方法的对转桨扇非定常流动数值模拟[J]. 航空动力学报,2021,36(5): 1060-1071. doi: 10.13224/j.cnki.jasp.2021.05.017

    WANG Jingyuan,SHAN Peng,ZHOU Yicheng. Unsteady flow simulation of contra-rotating propfans using immersed body-fitted grids boundary method[J]. Journal of Aerospace Power,2021,36(5): 1060-1071. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.05.017
    [7] FLISSARD F,BOISARD R,GAVERIAUX R,et al. Influence of blade deformations on open-rotor low-speed and high-speed aerodynamics and aeroacoustics[J]. Journal of Aircraft,2018,55(6): 2267-2281. doi: 10.2514/1.C034676
    [8] SHI W,LI J,YANG Z,et al. CFD analysis of contrarotating open rotor aerodynamic interactions[J]. International Journal of Aerospace Engineering,2018,2018: 1-13.
    [9] STUERMER A. Validation of an unstructured chimera grid approach for the simulation of propeller flows[R]. AIAA 2004-5289, 2004.
    [10] 周莉,是介,王占学. 开式转子发动机研究进展[J]. 推进技术,2019,40(9): 1921-1932. doi: 10.13675/j.cnki.tjjs.190084

    ZHOU Li,SHI Jie,WANG Zhanxue. Research progress in open rotor engine[J]. Journal of Propulsion Technology,2019,40(9): 1921-1932. (in Chinese) doi: 10.13675/j.cnki.tjjs.190084
    [11] 夏贞锋,杨永. 对转开式转子非定常气动干扰特性分析[J]. 航空动力学报,2014,29(4): 835-843. doi: 10.13224/j.cnki.jasp.2014.04.013

    XIA Zhenfeng,YANG Yong. Characteristic analysis of unsteady aerodynamic interactions of contra rotating open rotor[J]. Journal of Aerospace Power,2014,29(4): 835-843. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.04.013
    [12] 周人治,郝玉扬,祁宏斌. 开式转子发动机对转桨扇设计[J]. 燃气涡轮试验与研究,2014,27(1): 1-5.

    ZHOU Renzhi,HAO Yuyang,QI Hongbin. Open rotor contra rotating prop-fan design[J]. Gas Turbine Experiment and Research,2014,27(1): 1-5. (in Chinese)
    [13] 张宇, 王晓亮, 马影. 平流层飞艇对转螺旋桨推进性能研究[J]. 大连理工大学学报, 2020, 60(3): 221-227.

    ZHANG Yu, WANG Xiaoliang, MA Ying. Study of propulsion performance of contra-rotating propellers for stratospheric airship[J]. Journal of Dalian University of Technology, 2020, 60(3): 221-227. (in Chinese)
    [14] 吕昌昊,胡天翔,孙韬,等. 基于BWI辐射效率的低气动噪声共轴对转螺旋桨的设计研究[J]. 民用飞机设计与研究,2022,144(1): 83-89.

    LÜ Changhao,HU Tianxiang,SUN Tao,et al. Low noise counter rotating propellers design based on BWI radiation efficiency[J]. Civil Aircraft Design & Research,2022,144(1): 83-89. (in Chinese)
    [15] MENTER F, RUMSEY C. Assessment of two-equation turbulence models for transonic flows[R]. AIAA 94-2343, 1994.
    [16] KHAN W,NAHON M. A propeller model for general gorward flight conditions[J]. International Journal of Intelligent Unmanned Systems,2015,3(2): 72-92.
    [17] THEYS B, DIMITIADIS G, ANDRIANNE T, et al. Wind tunnel testing of a VTOL MAV propeller in tilted operating mode[C]// International Conference on Unmanned Aircraft Systems. Orlando, FL, US: IEEE, 2014: 23-30.
    [18] 林沐阳, 招启军, 赵国庆. 基于滑移网格的倾转旋翼机全机干扰流场研究[J]. 航空科学技术, 2021, 32(1): 100-108.

    LIN Muyang, ZHAO Qijun, ZHAO Guoqing. Research on the whole aircraft interference flow field of tilt-rotor aircraftbased on sliding grid[J]. Aeronautical Science & Technology, 2021, 32(1): 100-108. (in Chinese)
    [19] 高飞飞. 螺旋桨滑流非定常数值模拟与影响研究[J]. 航空计算技术,2017,47(5): 14-17. doi: 10.3969/j.issn.1671-654X.2017.05.004

    GAO Feifei. Numerical simulation of unsteady and research on effect of propeller slipstream[J]. Aeronautical Computing Technique,2017,47(5): 14-17. (in Chinese) doi: 10.3969/j.issn.1671-654X.2017.05.004
  • 加载中
图(10)
计量
  • 文章访问数:  239
  • HTML浏览量:  112
  • PDF量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-28
  • 网络出版日期:  2023-01-11

目录

    /

    返回文章
    返回