留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空第二动力系统技术综述

周洲 刘闯 朱学忠 朱姝姝

周洲, 刘闯, 朱学忠, 等. 航空第二动力系统技术综述[J]. 航空动力学报, 2024, 39(8):20220561 doi: 10.13224/j.cnki.jasp.20220561
引用本文: 周洲, 刘闯, 朱学忠, 等. 航空第二动力系统技术综述[J]. 航空动力学报, 2024, 39(8):20220561 doi: 10.13224/j.cnki.jasp.20220561
ZHOU Zhou, LIU Chuang, ZHU Xuezhong, et al. Review on aircraft secondary power system[J]. Journal of Aerospace Power, 2024, 39(8):20220561 doi: 10.13224/j.cnki.jasp.20220561
Citation: ZHOU Zhou, LIU Chuang, ZHU Xuezhong, et al. Review on aircraft secondary power system[J]. Journal of Aerospace Power, 2024, 39(8):20220561 doi: 10.13224/j.cnki.jasp.20220561

航空第二动力系统技术综述

doi: 10.13224/j.cnki.jasp.20220561
基金项目: 直升机传动技术国家级重点实验室课题(HTL-A-22K02)
详细信息
    作者简介:

    周洲(1992-),男,博士生,主要从事航空起动/发电系统研究

    通讯作者:

    刘闯(1973-),男,教授、博士生导师,博士,主要从事航空起动/发电系统和航空电源研究。E-mail:lc@nuaa.edu.cn

  • 中图分类号: V245

Review on aircraft secondary power system

  • 摘要:

    第二动力系统(SPS)是承担关键任务的复杂机载系统。以美军装备为例分别介绍了典型的机械传动SPS、气压传动SPS和电气传动SPS并对三者的优缺点进行了总结,回顾了美军与国防承包商的SPS研发历程并分析了它们的技术特点,总结了先进SPS的四项关键技术,简要介绍了SPS的应用拓展并对SPS的发展趋势进行了展望。指出了未来先进SPS的四大主要技术特点:多电化架构、高功能集成度、能量综合、优化利用能力以及与主发动机的协同增效。

     

  • 图 1  机械传动SPS[6]

    Figure 1.  Mechanical link SPS[6]

    图 2  F-15的SPS[4]

    Figure 2.  SPS of F-15[4]

    图 3  F-16所采用的EPU[5]

    Figure 3.  EPU of F-16[5]

    图 4  气压传动SPS[6]

    Figure 4.  Pneumatic link SPS[6]

    图 5  典型APU结构分类

    Figure 5.  Classification of APUs with typical structures

    图 6  F-22的APGS

    Figure 6.  APGS of F-22

    图 7  传统电气传动SPS[6]

    Figure 7.  Conventional electric link SPS[6]

    图 8  多电SPS

    Figure 8.  More electric SPS

    图 9  PTMS整体结构示意图[22]

    Figure 9.  Architecture of PTMS[22]

    图 10  PTMS IPP三维图

    Figure 10.  IPP in PTMS

    图 11  风扇涵道换热器

    Figure 11.  Fan duct heat exchanger

    图 12  美军SPS的研究与装备历史

    Figure 12.  Research and equipment history of SPS

    图 13  IPU(RD)结构示意图

    Figure 13.  Structure of IPU (RD)

    图 14  SIPU结构示意图

    Figure 14.  Structure of SIPU

    图 15  MIPU结构示意图

    Figure 15.  Structure of MIPU

    图 16  IPU(AS)结构示意图

    Figure 16.  Structure of IPU (AS)

    图 17  MEA-IPU结构示意图

    Figure 17.  Structure of MEA-IPU

    图 18  MEA-IPU概念图

    Figure 18.  Concept view of MEA-IPU

    图 19  IPU(HS)实物图

    Figure 19.  Pictures of IPU (HS)

    图 20  IPU(HS)起动/发电机与AMB冷却气流示意图[38-39]

    Figure 20.  Cooling airflow of S/G and AMB in IPU(HS)[38-39]

    图 21  T/EMM整体结构示意图[21]

    Figure 21.  Architecture of T/EMM[21]

    图 22  T/EMM IPP轴向剖视图[21]

    Figure 22.  Cross-section of IPP in T/EMM[21]

    图 23  ACE第三涵道换热器示意图

    Figure 23.  Third-stream heat exchangers in ACE

    图 24  波音提出的IPTMS结构框图

    Figure 24.  Structure of IPTMS proposed by Boeing

    图 25  汉胜提出的CBC发电系统

    Figure 25.  CBC power generation system proposed by Hamilton-Sundstrand

    图 26  霍尼韦尔的TPU

    Figure 26.  TPU proposed by Honeywell

    表  1  不同类型SPS的比较

    Table  1.   Comparison between different SPSs

    分类优点缺点
    机械
    传动
    系统
    · 高效传动,可使用额定功率更小、更加轻质的JFS· 直接机械传动,JFS安装位置受限
    · 复杂机械传动机构质量大,可靠性差,控制与维护复杂
    · 短时工作制设备,空中起动能力弱
    · 难以通过地勤设备实现主发动机二次起动
    气压
    传动
    系统
    · APU安装位置灵活
    · ECS与起动机管路复用
    · 易于通过地勤设备实现主发动机二次起动
    · 气压能传输与转化效率较低,需要较大额定功率的APU
    · 气压管路占据大量体积
    · 使用滚动轴承的ACM限制了系统体积的缩减
    多电
    系统
    · 简化的SPS结构
    · 电能传输效率高
    · APU安装位置灵活
    · 起动/发电机带来更高的系统集成度
    · 更高的燃机燃油经济性
    · 有利于二次能源优化管理和利用
    · 电能转换与管理依赖于高定额全控型电力电子器件
    · 大功率、高速、高功率密度起动/发电机的研制有较大技 术难度
    · 电储能系统的能量密度有待进一步提升
    下载: 导出CSV
  • [1] WOODHOUSE G D. Auxiliary power unit evolution-meeting tomorrow’s challenges[R]. SAE 932541, 1993.
    [2] WOOD P R, SPRAGINS W W. Integrated secondary power system (ADS) [R]. SAE 650828, 1965.
    [3] MESHEW A D, SWENSKI D F. Advanced auxiliary power system[R]. AFAPL-TR-72-58, 1972.
    [4] OSTROFF H S. F-15 secondary power systems[R]. SAE 740885, 1974.
    [5] ALLEN D V, STANCLIFFE A C, WHITE O W. Emergency power for the F-16 aircraft[R]. ASME Paper 83-GT-189, 1983.
    [6] RHODEN J A. Modern technology secondary power systems for next generation military aircraft[R]. SAE 841606, 1984.
    [7] RODGERS C. Auxiliary power units for current and future aircraft[R]. SAE 912059, 1991.
    [8] RODGERS C. A jet fuel starter and expendable turbojet[R]. ASME Paper 86-GT-1, 1986.
    [9] HAUSMANN W, PUCHER M, WEBER T. Secondary power systems for fighter aircraft experiences today and requirements for a next generation[R]. Copenhagen: the Propulsion and Energetics Panel 61st (B) Specialists’ Meeting, 1983
    [10] KOERNER M. Recent developments in aircraft emergency power[C]//Collection of Technical Papers of 35th Intersociety Energy Conversion Engineering Conference and Exhibit . Piscataway, US: IEEE, 2002: 12-19.
    [11] RODGERS C. Pneumatic link secondary power systems for military aircraft[R]. SAE 881499, 1988.
    [12] KLAASS R M F, DELLACORTE C. The quest for oil-free gas turbine engines[R]. SAE 2006-01-3055, 2006.
    [13] ULLYOTT R. Secondary power system preliminary design[R]. SAE 912189, 1991.
    [14] BENHAM JR D S, KOERNER M S. Jet fuel and air system for starting auxiliary power unit: US6829899[P]. 2004-12-14.
    [15] SMYTH J, MOREY R E, SCHULTZE R. Ceramic gas turbine technology development and applications[R]. ASME Paper 93-GT-361, 1993
    [16] ANGHEL C. A novel start system for an aircraft auxiliary power unit[C]//35th Intersociety Energy Conversion Engineering Conference and Exhibit. Piscataway, US: IEEE, 2002: 7-11.
    [17] TAGGE G E, IRISH L A, BAILEY A R. Systems study for an integrated digital/electric aircraft (IDEA) [R]. NASA-CR-3840, 1985
    [18] CRONIN M, HAYS A, GREEN F B, et al. Integrated digital/electric aircraft concepts study[R]. NASA-CR-3841, 1985.
    [19] WEIMER J. Past, present and future of aircraft electrical power systems[R]. AIAA 2001-1147, 2001.
    [20] WEIMER J. Power electronics in the more electric aircraft[R]. AIAA 2002-727, 2002.
    [21] WIEGAND C. F-35 air vehicle technology overview[R]. AIAA 2018-3368, 2018.
    [22] ROBBINS D, BOBALIK J, DE STENA D, et al. F-35 subsystems design, development & verification[R]. AIAA 2018-3518, 2018.
    [23] GANEV E, KOERNER M. Power and thermal management for future aircraft[R]. SAE 2013-01-2273, 2013
    [24] RODGERS C. Secondary power: a primary function[R]. SAE 871710, 1987.
    [25] MCFADDEN B. The super integrated power unit-the aircraft power unit of the future[R]. AIAA 1977-502, 1977.
    [26] RAYMOND E T. Secondary power system options for future military aircraft[R]. SAE 801192, 1980.
    [27] WILLIAMS J A, LUCCI A D, MCFADDEN B L. Aircraft super integrated power unit[R]. SAE 821461, 1982.
    [28] RODGERS C. Secondary power unit options for advanced fighter aircraft[R]. AIAA 1985-1280, 1985.
    [29] STEWART D B. Emergency power combined with an auxiliary power unit[R]. SAE 881500, 1988.
    [30] STEWART JR D B, RHODEN J A. Multifunction integrated power unit: US5309708[P]. 1994-05-10.
    [31] FRED KLAASS R M. Power system for 21st century fighter aircraft[R]. SAE 892253, 1989.
    [32] FRED KLAASS R M, MCFADDEN B. More-electric aircraft integrated power unit designed for dual use[R]. SAE 941159, 1994.
    [33] DURKIN E B, SCHAUER J J. Windage power loss of high-speed generators[C]//Proceedings of ASME 1997 International Mechanical Engineering Congress and Exposition. Dallas: ASME, 1997: 35-43.
    [34] HIMES E, SCHAUER J. Prediction and measurement of heat transfer in a switched reluctance generator[R]. AFRL-PR-WP-TR-2000-2064, 1998.
    [35] FINGERS R T. Creep behavior of thin laminates of iron-cobalt alloys for use in switched reluctance motors and generators[D]. Blacksburg, US: Virginia Polytechnic Institute and State University, 1998.
    [36] POTGIETER C, HOPE W, GREGORY E. Magnetic bearing controls for a high speed, high power switched reluctance machine (SRM) starter/generator[R]. SAE 2000-01-3665, 2000.
    [37] SMITH G, HALSEY D, HOFFMAN E P. Integrated power unit-advanced development[R]. SAE 981281, 1998.
    [38] HALSEY D, DOWNING R, NGUYEN D, et al. Closed Brayton cycle engine starter/generator cooling[R]. AIAA 2005-5504, 2005.
    [39] GRENNAN R, GREENLEE W, HALSEY D, et al. Air cooled dynamoelectric machine: US5994804[P]. 1999-11-30.
    [40] BURKHARD A H, HASKIN W L. Concepts for aircraft subsystem integration[R]. SAE 931377, 1993.
    [41] CARTER III H N, MATULICH D S, WEISS C F. A subsystem integration technology concept[R]. SAE 931382, 1993.
    [42] GAMBILL J M, WIESE D E, CLAEYS H M, et al. Integrated aircraft thermal management and power generation[R]. SAE 932055, 1993.
    [43] SMITH R A. Joint strike fighter integrated subsystems technology (J/IST) demonstration program overview[R]. SAE 962259, 1996.
    [44] BURKHARD A H, DEITRICH R. Joint strike fighter integrated subsystem technology (J/IST) demonstration program. execution and management of a technology maturation program conducted by industry, for industry[R]. AFRL-VA-WP-TP-2003-307, 2003.
    [45] WOLFF M. INVENT “tip-to-tail” energy/engine/power/thermal modeling, simulation, & analysis (MS&A)[R]. Boston, US: 5th Annual Research Consortium for Multidisciplinary System Design Workshop, 2010.
    [46] GRIGGS S C, IDEN S M, LAMM P T. Energy optimized aircraft: what is it and how do we make one?[R]. SAE 2012-01-2179, 2012.
    [47] WOLFF M. Integrated thermal/power/propulsion/vehicle modeling issues related to a more electric aircraft architecture[R]. RTO-MP-AVT-178, 2010.
    [48] WALTERS E, AMRHEIN M, O’CONNELL T, et al. INVENT modeling, simulation, analysis and optimization[R]. AIAA 2010-287, 2010.
    [49] O’CONNELL T, RUSSELL G, MCCARTHY K, et al. Energy management of an aircraft electrical system[R]. AIAA 2010-7092, 2010.
    [50] WEISE P C. Mission-integrated synthesis/design optimization of aerospace subsystems under transient conditions[D]. Blacksburg, US: Virginia Tech, 2012.
    [51] O’CONNELL T C, LUI C, WALIA P, et al. A hybrid economy bleed, electric drive adaptive power and thermal management system for more electric aircraft[R]. SAE 2010-01-1786, 2010.
    [52] COFFINBERRY G A, GARRIGAN N R. Adaptive power and thermal management system: US8522572[P]. 2013-09-03.
    [53] COFFINBERRY G A. Flade duct turbine cooling and power and thermal management: US20120297789[P]. 2012-11-29.
    [54] O’CONNELL T C, WELLS J R, LAMM P T, et al. A direct torque-controlled induction machine bidirectional power architecture for more electric aircraft[R]. SAE 2009-01-3219, 2009.
    [55] GANEV E, SARLIOGLU B. Improving load regeneration capability of an aircraft R]. SAE 2009-01-3189, 2009.
    [56] NEWMAN R W, DOOLEY M, LUI C. Efficient propulsion, power, and thermal management integration [R]. AIAA 2013-3681, 2013.
    [57] CHAPMAN J W. A study of large scale power extraction and insertion on turbofan performance and stability[R]. AIAA 2020-3547, 2020.
    [58] RODGERS C. Fast start APU technology[R]. SAE 861712, 1986.
    [59] BORNEMISZA T, RODGERS C. Fast start ceramic auxiliary power unit[R]. SAE 892254, 1989.
    [60] LINDBERG L. Elevated temperature durability of ceramic materials[R]. AIAA 1988-3055, 1988.
    [61] BOYD G L,KREINER D M. AGT101/ATTAP ceramic technology development[J]. Journal of Engineering for Gas Turbines and Power,1989,111(1): 158-167. doi: 10.1115/1.3240217
    [62] NASA. Advanced turbine technology applications project (ATTAP) 1993 annual report[R]. NASA CR-189228. 1992.
    [63] RETTLER M W, EASLEY M L, SMYTH J R. Ceramic gas turbine technology development[J]. Journal of Engineering for Gas Turbines and Power, 1995, 117(4): 783-791
    [64] SCHENK B. Ceramic turbine engine demonstration project: a summary report[J]. Journal of Engineering for Gas Turbines and Power,2002,124(3): 617-626. doi: 10.1115/1.1417983
    [65] RICHERSON D W. Historical review of addressing the challenges of use of ceramic components in gas turbine engines[R]. ASME Paper GT2006-90330, 2006.
    [66] DICARLO J A, YUN H M, MORSCHER G N, et al. Progress in SiC/SiC ceramic composite development for gas turbine hot-section components under NASA EPM and UEET programs[R]. ASME Paper GT2006-90151, 2006.
    [67] CHRISTIN F. Design, fabrication, and application of thermostructural composites (TSC) like C/C, C/SiC, and SiC/SiC composites[J]. Advanced Engineering Materials,2002,4(12): 903-912. doi: 10.1002/adem.200290001
    [68] BHATIA T, JARMON D, SHI J, et al. CMC combustor liner demonstration in a small helicopter engine[R]. ASME Paper GT2010-23810, 2010.
    [69] HALBIG M, JASKOWIAK M, KISER J, et al. Evaluation of ceramic matrix composite technology for aircraft turbine engine applications[R]. AIAA 2013-539, 2013.
    [70] VAN ROODE M,BHATTACHARYA A K. Durability of oxide/oxide ceramic matrix composites in gas turbine combustors[J]. Journal of Engineering for Gas Turbines and Power,2013,135(5): 051301. doi: 10.1115/1.4007978
    [71] GERENDÁS M, WILHELMI C, MACHRY T, et al. Development and validation of oxide/oxide CMC combustors within the HiPOC program[R]. ASME Paper GT2013-94679, 2013.
    [72] BEHRENDT T,HACKEMANN S,MECHNICH P,et al. Development and test of oxide/oxide ceramic matrix composites combustor liner demonstrators for aero-engines[J]. Journal of Engineering for Gas Turbines and Power,2017,139(3): 031507. doi: 10.1115/1.4034515
    [73] PADTURE N P. Advanced structural ceramics in aerospace propulsion[J]. Nature Materials,2016,15(8): 804-809. doi: 10.1038/nmat4687
    [74] 刘巧沐,黄顺洲,何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程,2019,47(2): 1-10. doi: 10.11868/j.issn.1001-4381.2018.000979

    LIU Qiaomu,HUANG Shunzhou,HE Aijie. Application requirements and challenges of CMC-SiC composites on aero-engine[J]. Journal of Materials Engineering,2019,47(2): 1-10. (in Chinese) doi: 10.11868/j.issn.1001-4381.2018.000979
    [75] 刘巧沐,许建锋,刘佳. 碳化硅陶瓷基复合材料基体和涂层改性研究进展[J]. 硅酸盐学报,2018,46(12): 1700-1706. doi: 10.14062/j.issn.0454-5648.2018.12.06

    LIU Qiaomu,XU Jianfeng,LIU Jia. Development on anti-oxidation modification of CMC-SiC composites matrix and coating[J]. Journal of the Chinese Ceramic Society,2018,46(12): 1700-1706. (in Chinese) doi: 10.14062/j.issn.0454-5648.2018.12.06
    [76] STEIBEL J. Ceramic matrix composites taking flight at GE Aviation[J]. American Ceramic Society Bulletin,2019,98(3): 30-33.
    [77] VAZQUEZ CALNACASCO D. All-oxide ceramic matrix composites: thermal stability during tribological interactions with superalloys[D]. Lulea, Sweden: Lulea University of Technology, 2021.
    [78] KISER J D, GRADY J E, BHATT R T, et al. Overview of CMC (ceramic matrix composite) research at the NASA glenn research center[R]. Cleveland, US: Ceramics Expo 2016, 2016.
    [79] 刘小冲,徐友良,李坚,等. 陶瓷基复合材料涡轮叶盘设计、制备与考核验证[J]. 复合材料学报,2023,40(3): 1696-1706. doi: 10.13801/j.cnki.fhclxb.20220407.001

    LIU Xiaochong,XU Youliang,LI Jian,et al. Design, fabrication and testing of ceramic-matrix composite turbine blisk[J]. Acta Materiae Compositae Sinica,2023,40(3): 1696-1706. (in Chinese) doi: 10.13801/j.cnki.fhclxb.20220407.001
    [80] FERREIRA C A, RICHTER E. Detailed design of a 250 kW switched reluctance starter/generator for an aircraft engine[R]. SAE 931389, 1993.
    [81] RICHTER E, ANSTEAD D H, BARTOS J W, et al. Preliminary design of an internal starter/generator for application in the F110-129 engine[R]. SAE 951406, 1995.
    [82] POWELL D, JEWELL G, EDE J, et al. An integrated starter/generator for a large civil aero-engine[R]. AIAA 2005-5550, 2005.
    [83] SAWATA T, PASKELL L, DINU A, et al. Initial test results for the fan shaft driven generator[R]. Hamburg, German: 25th International Congress of the Aeronautical Sciences, 2006.
    [84] SONG S. Detailed design of a 30 kW switched reluctance starter/generator system used in more/all electric aircraft[D]. Berlin: Technical University of Berlin, 2009.
    [85] RODRIGUES L. High temperature embedded electrical machines for aerospace turbine applications[D]. Sheffield , UK: University of Sheffield, 2013.
    [86] BORG BARTOLO J,DEGANO M,ESPINA J,et al. Design and initial testing of a high-speed 45-kW switched reluctance drive for aerospace application[J]. IEEE Transactions on Industrial Electronics,2017,64(2): 988-997. doi: 10.1109/TIE.2016.2618342
    [87] LAFUZE D, WEBB R, TRIEBEL C F, et al. 150 kVA samarium cobalt VSCF starter generator electrical system [R]. AFAPL-TR-78-104, 1978.
    [88] BRAND J H, DOOLEY K A, DOWHAN M J, et al. More electric small turbofan[R]. SAE 2004-01-1804, 2004.
    [89] BESNARD J P, BIAIS F, MARTINEZ M. Electrical rotating machines and power electronics for new aircraft equipment systems[R]. Hamburg, German: 25th Congress of the International Council of the Aeronautical Sciences, 2006.
    [90] SUN Zhigan, EDE J, WANG Jiabin, et al. Experimental testing of a 250 kW fault-tolerant permanent magnet power generation system for large civil aero-engines[R]. AIAA 2007-4829, 2007.
    [91] BHANGU B S,RAJASHEKARA K. Electric starter generators: their integration into gas turbine engines[J]. IEEE Industry Applications Magazine,2014,20(2): 14-22. doi: 10.1109/MIAS.2013.2288398
    [92] SHORTTE M. Electro-thermal optimisation of a 50 kW synchronous permanent magnet generator for aerospace application[D]. Sheffield, UK: University of Sheffield, 2016.
    [93] BOZHKO S,YANG Tao,LE PEUVEDIC J M,et al. Development of aircraft electric starter–generator system based on active rectification technology[J]. IEEE Transactions on Transportation Electrification,2018,4(4): 985-996. doi: 10.1109/TTE.2018.2863031
    [94] BALACHANDRAN A,BODEN M,SUN Zhigang,et al. Design, construction, and testing of an aero-engine starter-generator for the more-electric aircraft[J]. The Journal of Engineering,2019(17): 3474-3478. doi: 10.1049/joe.2018.8235
    [95] ZHANG Xiaochen, ZHANG He, GERADA C, et al. Eddy current loss control in high speed PM starter-generator[C]//2019 IEEE Workshop on Electrical Machines Design, Control and Diagnosis. Piscataway, US: IEEE, 2019: 46-50.
    [96] CHIODETTO N, MECROW B, WROBEL R, et al. Electro-mechanical challenges in the design of a high-speed-high-power-PMSM rotor for an aerospace application[C]//2019 IEEE Energy Conversion Congress and Exposition. Piscataway: IEEE, 2019: 3944-3951.
    [97] 李雄,林发驹,杜思敏,等. 高性能轴承钢的比较分析[J]. 金属热处理,2021,46(6): 14-20. doi: 10.13251/j.issn.0254-6051.2021.06.003

    LI Xiong,LIN Faju,DU Simin,et al. Comparative analysis of high performance bearing steels[J]. Heat Treatment of Metals,2021,46(6): 14-20. (in Chinese) doi: 10.13251/j.issn.0254-6051.2021.06.003
    [98] CLARK D, JANSEN M, MONTAGUE G. An overview of magnetic bearing technology for gas turbine engines[R]. ARL-TR-3254, 2004.
    [99] 谢振宇,徐龙祥,李迎,等. 控制参数对磁悬浮轴承转子系统动态特性的影响[J]. 航空动力学报,2004,19(2): 174-178. doi: 10.3969/j.issn.1000-8055.2004.02.002

    XIE Zhenyu,XU Longxiang,LI Ying,et al. Influence of control parameters on dynamic characteristics of active magnetic bearing system[J]. Journal of Aerospace Power,2004,19(2): 174-178. (in Chinese) doi: 10.3969/j.issn.1000-8055.2004.02.002
    [100] 徐园平. 柔性转子磁悬浮轴承支承特性辨识[D]. 南京: 南京航空航天大学, 2018.

    XU Yuanping. Identification of supporting characteristics of flexible rotor AMBs system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
    [101] KELLEHER W, KONDOLEON A. A magnetic bearing suspension system for high temperature gas turbine applications: Part Ⅲ magnetic actuator development[R]. ASME Paper 97-GT-114, 1997.
    [102] SCHOLTEN J R. A magnetic bearing suspension system for high temperature gas turbine applications: control system design[R]. ASME Paper 97-GT-029, 1997.
    [103] MONTAGUE G, JANSEN M, EBIHARA B, et al. Design and fabrication of high-temperature, radial magnetic bearing for turbomachinery[R]. ARL-TR-2954, 2003.
    [104] JANSEN M, MONTAGUE G, PROVENZA A, et al. High speed, high temperature, fault tolerant operation of a combination magnetic-hydrostatic bearing rotor support system for turbomachinery[R]. ASME Paper GT2004-53321, 2004.
    [105] MOHIUDDIN M W, PALAZZOLO A B, TUCKER R P, et al. High temperature magnetic thrust bearing: theory and experiment[R]. ASME Paper GT2019-91544, 2019.
    [106] XU Longxiang. High temperature displacement sensor[J]. Chinese Journal of Mechanical Engineering (English Edition),2005,18(3): 449. doi: 10.3901/CJME.2005.03.449
    [107] 金超武,徐龙祥,朱益利. 高温磁悬浮轴承用位移传感器的研究[J]. 航空学报,2014,35(1): 230-239.

    JIN Chaowu,XU Longxiang,ZHU Yili. Research on displacement sensor of high temperature active magnetic bearing[J]. Acta Aeronautica et Astronautica Sinica,2014,35(1): 230-239. (in Chinese)
    [108] 金超武,鲁旭东,朱益利,等. 高温磁悬浮轴承励磁绕组制造技术[J]. 航空动力学报,2013,28(3): 513-519. doi: 10.13224/j.cnki.jasp.2013.03.009

    JIN Chaowu,LU Xudong,ZHU Yili,et al. Excitation coil manufacturing technology for high temperature active magnetic bearing[J]. Journal of Aerospace Power,2013,28(3): 513-519. (in Chinese) doi: 10.13224/j.cnki.jasp.2013.03.009
    [109] SURIANO F J, DAYTON R, WOESSNER F. Test experience with turbine-end foil bearing equipped gas turbine engines[R]. ASME Paper 83-GT-73, 1983.
    [110] DELLACORTE C. Oil-free shaft support system rotordynamics: past, present, and future challenges and opportunities[R]. NASA/TM-2011-217003, 2011.
    [111] DELLACORTE C, BAUMAN S, RADIL K, et al. Advanced rotor support technologies for closed brayton cycle turbines[R]. AIAA 2005-5513, 2005.
    [112] BRUCKNER R J. Windage power loss in gas foil bearings and the rotor-stator clearance of high speed generators operating in high pressure environments[R]. ASME Paper GT2009-60118, 2009.
    [113] HESHMAT H, REN Z H, HUNSBERGER A, et al. The emergence of compliant foil bearing and seal technologies in support of 21st century compressors and turbine engines[C]//Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition. Vancouver, Canada: ASME, 2010: 95-103.
    [114] HESHMAT H, WALTON J F, NICHOLSON B D. Ultra-high temperature compliant foil bearings: the journey to 870℃ and application in gas turbine engines—experiment[R]. ASME Paper GT2018-75555, 2018.
    [115] LIN T, HILL B P, TIBBS G B. Thermal benefits of advanced integrated fuel system using JP-8+100 fuel[R]. SAE 975507, 1997.
    [116] LETLOW J T, JENKINS L C. Development of an integrated environmental control system[R]. SAE 981544, 1998.
    [117] SPROUSE J. F-22 environmental control/thermal management fluid transport optimization[R]. SAE 2000-01-2266, 2000.
    [118] BLANDING D E, ALDANA J F, SCHLUNDT D W. SUIT: the integration of aircraft utility subsystems[R]. SAE 931381, 1993.
    [119] GANEV E. Transition to electric and hybrid aircraft[R]. Washington DC: More Electric and Hybrid Aircraft Conference, 2019.
    [120] MOIR I, SEABRIDGE A. Aircraft systems: mechanical, electrical, and avionics subsystems integration[M]. Chichester, England: John Wiley & Sons, 2011.
    [121] GHANEKAR M. Vapor cycle system for the F-22 raptor[R]. SAE 2000-01-2268, 2000.
    [122] BYRD L, COLE A, CRANSTON B, et al. Two phase thermal energy management system[R]. SAE 2011-01-2584, 2011.
    [123] BYRD L, COLE A, EMO S, et al. In-situ charge determination for vapor cycle systems in aircraft[R]. SAE 2012-01-2187, 2012.
    [124] STOIA M F, EK G W, BOWCUTT K G, et al. Integrated power and thermal management system for high speed aircraft[R]. AIAA 2021-3531, 2021.
    [125] CHENG Kunlin,QIN Jiang,SUN Hongchuang,et al. Power optimization and comparison between simple recuperated and recompressing supercritical carbon dioxide closed-Brayton-cycle with finite cold source on hypersonic vehicles[J]. Energy,2019,181: 1189-1201. doi: 10.1016/j.energy.2019.06.010
    [126] KOERNER M, GANEV E. An electric power generation system for launch vehicles[R]. SAE 2006-01-3061, 2006.
  • 加载中
图(26) / 表(1)
计量
  • 文章访问数:  124
  • HTML浏览量:  55
  • PDF量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 网络出版日期:  2023-10-27

目录

    /

    返回文章
    返回