Numerical study on heat exchange performance for three-dimensional methane pre-cooler
-
摘要:
采用三维数值仿真方法对轴向管束式甲烷预冷器的热交换性能进行了评估,获得了预冷器在不同冷却剂当量比和飞行工况下的流场分布,并在此基础上提出了冷却剂流量控制策略。计算结果表明:该型甲烷预冷器在3倍当量比冷却剂条件下最高能将来流空气冷却131 K,能将传统涡轮发动机工作速域拓展至马赫数为3.0以上;预冷器出口空气流场受管束排列方式影响无法实现完全均匀,总温畸变为13.3%;甲烷最高温升为395 K;冷却管内外壁面平均温差约为15 K,管内甲烷横截面内温差约为10 K;预冷器总压恢复系数为0.715~0.88,换热有效度为0.63~0.9,最大功质比为395 kW/kg。在发动机预冷需求和冷却剂消耗限制条件下规划了冷却剂流量控制策略,建议马赫数为2.5以下保持不高于1.5倍当量比冷却剂,马赫数为3.0以上保持3倍当量比冷却剂。
Abstract:A three-dimensional simulation method was established to assess the heat exchange performance with methane as coolant for an axial tube-bundled pre-cooler. The flow field of the pre-cooler was obtained at different coolant equivalent ratios and flight conditions, and the control strategy of coolant massflow was proposed from the simulation results. The assessed results indicated that the incoming air could be cooled 131 K at maximum under the condition of three times the equivalent ratio by methane pre-cooler, extending the working velocity spectrum to
Ma= 3.0 at least for conventional turbine engine. The air field could not completely well-distributed because of the influence of the tube arrangement which led to a maximum temperature distortion of 13.3%. The methane got a maximum temperature rise of 395 K. The temperature difference between the outside and inside tube surfaces was about 15 K, and the methane temperature range at cross section of the tube was about 10 K. The total pressure recovery coefficient of the pre-cooler was 0.715—0.88, the heat transfer efficiency was 0.63—0.9, and the maximum power-weight ratio was 395 kW/kg. The control strategy for coolant was proposed under the condition of engine pre-cooling requirement and coolant consumption limitation. It is recommended that the consumption of coolant should be restricted to 1.5 times the equivalent ratio as flight velocity was lower thanMa= 2.5, and 3.0 times the equivalent ratio as flight velocity was higher thanMa= 3.0.-
Key words:
- pre-cooler /
- methane /
- pre-cooled engine /
- heat exchange /
- cooling tube
-
表 1 预冷器仿真计算边界条件
Table 1. Boundary conditions for pre-cooler simulation
边界条件 Ma0=2.0 Ma0=2.5 Ma0=2.8 Ma0=3.0 Ma0=3.1 空气流量/(kg/s) 0.4641 0.3372 0.3952 0.4556 0.4556 空气入口静压/kPa 198 213 290 445 445 空气来流总温/K 388 480 550 601 628 空气出口背压/kPa 138 180 246 386 386 冷却剂当量比 1.0/2.0 1.0/2.0/3.0 1.0/2.0/3.0 2.0/3.0 3.0 冷却剂入口静压/kPa 785/ 1174 717/ 1029 /1346 803/ 1211 /1610 1404 /1 8851 920 冷却剂入口总温/K 117 117 117 117 117 冷却剂出口背压/kPa 500 500 500 500 500 表 2 试验与仿真结果对比
Table 2. Comparison of test and simulation results
冷却剂种类 参数 文献[25]实验数据 仿真结果 相对误差/% 氮 空气入口温度/K 283 283.8 0.28 空气出口温度/K 248 247.4 0.24 空气入口压力/kPa 101.9 103.0 1.08 空气出口压力/kPa 93.9 93.9 0 氢 空气入口温度/K 279 279.6 0.2 空气出口温度/K 188 185.1 1.54 空气入口压力/kPa 101.8 102.6 0.79 空气出口压力/kPa 96.4 96.4 0 -
[1] WANG Zhenguo,WANG Yuan,ZHANG Jianqiang,et al. Overview of the key technologies of combined cycle engine precooling systems and the advanced applications of micro-channel heat transfer[J]. Aerospace Science and Technology,2014,39: 31-39. doi: 10.1016/j.ast.2014.08.008 [2] VARVILL R,BOND A. A comparison of propulsion concepts for SSTO reusable launchers[J]. Journal of the British Interplanetary Society,2003,56: 108. [3] OIKE M,KAMIJO K,TANAKA D,et al. LACE for rocket-based combined-cycle: AIAA1999-0091 [R]. Reston,US: AIAA,1999. [4] ANDREW C,ADAM W,JASON A,et al. ACES: propulsion technology for next generation space transportation: IAC-03-S. 5.03 [R]. Bremen,Germany: AIAA,2003. [5] SATO T,TANATSUGU N,NARUO Y,et al. Development study on ATREX engine[J]. Acta Astronautica,2000,47(11): 799-808. doi: 10.1016/S0094-5765(00)00129-6 [6] SAWAI S,SATO T,KOBAYASHI H,et al. Flight test plan for ATREX engine development: AIAA-2003-7027 [R]. Norfolk,US: AIAA,2003. [7] SATO T,KOBAYASHI H,TANATSUGU N,et al. Development study of the precooler of ATREX engine: AIAA-2003-6985[R]. Norfolk,US: AIAA,1997. [8] HARADA K,TANATSUGU N,SATO T. Development study of a precooler for the air-turboramjet expander-cycle engine[J]. Journal of Propulsion and Power,2001,17(6): 1233-1238. doi: 10.2514/2.5869 [9] FUKIBA K,INOUE S,OHKUBO H,et al. New defrosting method using jet impingement for precooled turbojet engines[J]. Journal of Thermophysics and Heat Transfer,2009,23(3): 533-542. doi: 10.2514/1.40491 [10] 张蒙正,李平,陈祖奎. 组合循环动力系统面临的挑战及前景[J]. 火箭推进,2009,35(1): 1-8,15. ZHANG Mengzheng,LI Ping,CHEN Zukui. Challenge and perspective of combined cycle propulsion system[J]. Journal of Rocket Propulsion,2009,35(1): 1-8,15. (in Chinese doi: 10.3969/j.issn.1672-9374.2009.01.001ZHANG Mengzheng, LI Ping, CHEN Zukui. Challenge and perspective of combined cycle propulsion system[J]. Journal of Rocket Propulsion, 2009, 35(1): 1-8, 15. (in Chinese) doi: 10.3969/j.issn.1672-9374.2009.01.001 [11] LONGSTAFF R,BOND A. The Skylon project: AIAA-2011-2244 [R]. San Francisco,USA: AIAA,2011. [12] VARVILL R,BOND A. The Skylon spaceplane: progress to realization[J]. Journal of the British Interplanetary Society,2008,61: 412-418. [13] European Space Agency. Skylon assessment report [R]. Paris,France: European Space Agency,2011. [14] MURRAY J J,GUHA A,BOND A. Overview of the development of heat exchangers for use in air-breathing propulsion pre-coolers[J]. Acta Astronautica,1997,41(11): 723-729. doi: 10.1016/S0094-5765(97)00199-9 [15] MURRAY J,HEMPSELL C,BOND A. An experimental precooler for airbreathing rocket engines[J]. Journal of the British Interplanetary Society,2001,54: 199-209. [16] WEBBER H,FEAST S,BOND A. Heat exchanger design in combined cycle engines[J]. Journal of the British Interplanetary,2008,54: 1-6. [17] VARVILL R. Heat exchanger development at Reaction Engines Ltd.[J]. Acta Astronautica,2010,66(9/10): 1468-1474. [18] WEBBER H,TAYLOR N. Tunnel development for heat transfer analysis in compact heat exchangers: AIAA-2010-4537[R]. Chicago,USA: AIAA,2010. [19] 高远,陈玉春,史新兴. SABRE预冷器计算模型及其在整机模型中的应用[J]. 推进技术,2021,42(11): 2485-2493. GAO Yuan,CHEN Yuchun,SHI Xinxing. SABRE precooler calculation model and its application in engine model[J]. Journal of Propulsion Technology,2021,42(11): 2485-2493. (in ChineseGAO Yuan, CHEN Yuchun, SHI Xinxing. SABRE precooler calculation model and its application in engine model[J]. Journal of Propulsion Technology, 2021, 42(11): 2485-2493. (in Chinese) [20] 李帅,马同玲,刘洪涛,等. SABRE预冷器结构参数对其性能影响的数值分析[J]. 推进技术,2022,43(4): 257-264. LI Shuai,MA Tongling,LIU Hongtao,et al. Numerical analysis of effects of pre-cooler structure parameter on its performance in SABRE[J]. Journal of Propulsion Technology,2022,43(4): 257-264. (in ChineseLI Shuai, MA Tongling, LIU Hongtao, et al. Numerical analysis of effects of pre-cooler structure parameter on its performance in SABRE[J]. Journal of Propulsion Technology, 2022, 43(4): 257-264. (in Chinese) [21] 张小平,李春红,马冬英. 液氧/甲烷发动机动力循环方式研究[J]. 火箭推进,2009,35(4): 14-20,43. ZHANG Xiaoping,LI Chunhong,MA Dongying. Study on the LOX/methane rocket engine power cycles[J]. Journal of Rocket Propulsion,2009,35(4): 14-20,43. (in Chinese doi: 10.3969/j.issn.1672-9374.2009.04.003ZHANG Xiaoping, LI Chunhong, MA Dongying. Study on the LOX/methane rocket engine power cycles[J]. Journal of Rocket Propulsion, 2009, 35(4): 14-20, 43. (in Chinese) doi: 10.3969/j.issn.1672-9374.2009.04.003 [22] 王成刚,孙宝坤,林纬,等. 超临界压力下低温甲烷在螺旋管内传热数值研究[J]. 低温与超导,2018,46(2): 1-5,14. WANG Chenggang,SUN Baokun,LIN Wei,et al. Heat transfer study of methane in a helical coiled tube at supercritical pressure[J]. Cryogenics & Superconductivity,2018,46(2): 1-5,14. (in ChineseWANG Chenggang, SUN Baokun, LIN Wei, et al. Heat transfer study of methane in a helical coiled tube at supercritical pressure[J]. Cryogenics & Superconductivity, 2018, 46(2): 1-5, 14. (in Chinese) [23] 张楚薇. 液氧甲烷发动机燃烧及耦合传热计算研究[D]. 北京: 中国航天科技集团公司第一研究院,2017. ZHANG Chuwei. Study on the coupled calculation of combustion and heat transfer in LOX/methane rocket engine[D]. Beijing: China Aerospace Science and Technology Corporation,2017. (in ChineseZHANG Chuwei. Study on the coupled calculation of combustion and heat transfer in LOX/methane rocket engine[D]. Beijing: China Aerospace Science and Technology Corporation, 2017. (in Chinese) [24] 尹亮,刘伟强. 液氧/甲烷发动机研究进展与技术展望[J]. 航空兵器,2018,25(4): 21-27. YIN Liang,LIU Weiqiang. Review and prospect of LOX/methane rocket engine systems[J]. Aero Weaponry,2018,25(4): 21-27. (in ChineseYIN Liang, LIU Weiqiang. Review and prospect of LOX/methane rocket engine systems[J]. Aero Weaponry, 2018, 25(4): 21-27. (in Chinese) [25] TANATSUGU N,SATO T,BALEPIN V,et al. Development study on ATREX engine: AIAA-96-4553 [R]. Norfolk,USA: AIAA,2003. [26] HARADA K,TANATSUGU N,SATO T. Development study on pre-cooler for ATREX engine: AIAA-99-4897 [R]. Norfolk,USA: AIAA,1999.