留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燃烧室陶瓷复合材料火焰筒应用与技术分析

曾青华 陈炫午 曾琦 李子万 谢鹏福

曾青华, 陈炫午, 曾琦, 等. 燃烧室陶瓷复合材料火焰筒应用与技术分析[J]. 航空动力学报, 2024, 39(9):20220629 doi: 10.13224/j.cnki.jasp.20220629
引用本文: 曾青华, 陈炫午, 曾琦, 等. 燃烧室陶瓷复合材料火焰筒应用与技术分析[J]. 航空动力学报, 2024, 39(9):20220629 doi: 10.13224/j.cnki.jasp.20220629
ZENG Qinghua, CHEN Xuanwu, ZENG Qi, et al. Application and technical analysis of ceramic composite combustor liner[J]. Journal of Aerospace Power, 2024, 39(9):20220629 doi: 10.13224/j.cnki.jasp.20220629
Citation: ZENG Qinghua, CHEN Xuanwu, ZENG Qi, et al. Application and technical analysis of ceramic composite combustor liner[J]. Journal of Aerospace Power, 2024, 39(9):20220629 doi: 10.13224/j.cnki.jasp.20220629

燃烧室陶瓷复合材料火焰筒应用与技术分析

doi: 10.13224/j.cnki.jasp.20220629
基金项目: 航空发动机及燃气轮机基础科学中心项目(2022-A-Ⅱ-005)
详细信息
    作者简介:

    曾青华(1982-),男,副研究员,博士,主要从事航空燃烧室研究。E-mail:zengqh@tsinghua.edu.cn

  • 中图分类号: V257

Application and technical analysis of ceramic composite combustor liner

  • 摘要:

    基于航空发动机及燃烧室发展趋势与特点,分析新一代航空发动机燃烧室对陶瓷复合材料的需求,阐述火焰筒陶瓷复合材料的组分构成、类型特征及高温耐腐性等特性,总结不同制备方法下火焰筒陶瓷复合材料的工艺原理和优缺点,并详细讨论了陶瓷复合材料在燃烧室火焰筒上的应用现状,最后结合陶瓷复合材料显著的各向异性特点与挑战,提出燃烧室陶瓷复合材料火焰筒设计的关键技术。结论认为,陶瓷复合材料火焰筒在燃烧室上应用的技术优势明显,其在多型先进军民用航空发动机上的服役状况验证了发展陶瓷复合材料火焰筒技术路线的可行性,但由于陶瓷复合材料对热应力的高度敏感及其复杂的传热与力学特性,使得其工程应用依然存在很大技术挑战;当前陶瓷复合材料火焰筒在工程应用上亟须攻克的关键技术包括陶瓷复合材料火焰筒冷却设计、陶瓷复合材料燃烧室的燃烧组织设计、陶瓷复合材料火焰筒构件间的连接设计、陶瓷复合材料火焰筒强度正向设计等。

     

  • 图 1  陶瓷复合材料

    Figure 1.  Ceramic composite material

    图 2  陶瓷复合材料火焰筒研发过程

    Figure 2.  Ceramic composite liner development

    图 3  CERASEP-A415 燃烧室火焰筒

    Figure 3.  CERASEP-A415 combustor liner

    图 4  IHPTET项目的陶瓷复合材料火焰筒[40]

    Figure 4.  Ceramic composite liner in IHPTET[40]

    图 5  TECH56计划中的低排放陶瓷复合材料火焰筒[11]

    Figure 5.  Low emission ceramic composite liner in TECH56 program[11]

    图 6  PW206陶瓷复合材料火焰筒考核前后[12]

    Figure 6.  Ceramic composite liner of PW206 before and after assessment[12]

    图 7  Solar Turbine公司开发的陶瓷复合材料火焰筒[27]

    Figure 7.  Ceramic composite liner from Solar Turbine Cooperation[27]

    图 8  Solar Turbine公司测得的Ox/Ox陶瓷复合材料外火焰筒壁面温度[32]

    Figure 8.  Surface and interface temperature of Ox/Ox outer liner measured in Solar Turbine Cooperation [32]

    图 9  AMG研究所陶瓷复合材料燃烧室测试前后[46]

    Figure 9.  AMG Institute ceramic composite liner before and after combustion test[46]

    图 10  德国航空航天中心Ox/Ox管状燃烧室

    Figure 10.  German Aerospace Center Ox/Ox tubular combustor

    表  1  航空发动机常用高温材料及其特性[19-20]

    Table  1.   High temperature materials commonly used in aero engines and their properties[19-20]

    高温材料 类型 材料特性 应用部件
    TiAl系合金 金属间
    化合物
    许用温度:600~750 ℃;密度:5.3 g/cm3 ;热膨胀系数较低;蠕变强度较高。该材料缺点在于许用温度较低、制备成本较高 压气机叶片、低压涡轮叶片
    Ni3Al基合金 熔点高:1390 ℃;密度:7.5 g/cm3;高温强度强:1100 ℃、100 h下纵向持久性能大于80 MPa;组织稳定、铸造工艺性好、成本低 燃烧室喷嘴、涡轮导向叶片、
    涡轮外环、喷管调节片
    Nb-Si基合金 熔点高:1700 ℃;密度:7 g/cm3;高温强度优良;许用温度有望达12001400 ℃。但存在制备工艺不成熟、中低温塑性与韧性差、高温易氧化等挑战 高压涡轮导向叶片
    Ni-Cr基合金 长时许用温度:900 ℃;密度9 g/cm3;具有较高的强度与良好的塑性,其中GH3044合金是一般火焰筒常用的材料 主燃烧室火焰筒、
    加力燃烧室、导向叶片
    陶瓷材料 陶瓷 高温强度高;熔点高;热稳定性好;热膨胀系数较小;密度
    低;硬度大;耐磨。但脆性大、强度分散大、可靠性低
    应用较少
    Cf/C复合材料 复合材料 密度低;比模量高;比强度高;高温强度高;耐超高温;耐烧蚀;耐热冲击、热膨胀系数低。但高温下易被氧化 燃烧室部件、喷管部件、
    涡轮转子
    SiC/SiC陶瓷复合材料 长时许用温度可达1350 ℃,少量冷却气条件下可在
    1650 ℃条件下长时工作,密度低(约为合金的1/3),克服了陶瓷脆性大的弱点
    燃烧室火焰筒、高压涡轮静子
    叶片、火焰稳定器、尾喷管、
    涡轮外环
    下载: 导出CSV

    表  2  火焰筒陶瓷复合材料制备方法比较

    Table  2.   Comparison of fabrication methods of ceramic composite liner materials

    制备方法 类型 工艺原理 优点 缺点
    化学气相
    渗透法
    SiC/SiC 在高温条件下,气相前驱体渗入纤维预制体并开裂,然后在纤维表面反应沉积SiC基体 材料纯度高,通常基体具有完整晶体结构,力学性能优异 工艺复杂、制备周期长、成本较高
    熔融渗硅工艺 SiC/SiC 熔融的硅或硅合金通过毛细管渗入到纤维预制体中,纤维预制体中已预先填充SiC和碳粉,硅与碳反应形成SiC基体并填充剩余孔隙 制造成本低、周期短、材料气孔率低 液相渗硅反应温度高,对SiC纤维会产生一定损伤,同时基体中残留硅,易导致材料脆性较高
    聚合物浸渍
    裂解工艺
    SiC/SiC 将纤维预制体浸渍在聚合物前驱体溶液中,然后通过热解得到SiC基体,经热处理和无机硬化形成陶瓷体 制备温度低、纤维损伤小、陶瓷体可设计性强,易于成型实现大型复杂构件的制造 在制备过程中,基体收缩较大且材料的孔隙率高,一定程度上影响材料蠕变性能
    浆料浸渍法 Ox/Ox 把陶瓷纤维浸渍于含有陶瓷体的浆料中,然后把表面涂覆浆料的陶瓷纤维缠绕至滚筒,进而制作成无纬布。在经过切片、叠加、热模压成型和热压烧结后,获得致密化的复合材料 工艺简单,成本较低,制作周期短,可实现近净成型及量产 热压工艺容易使纤维造成损伤,降低了复合材料的力学性能,难以制备三维大型陶瓷复合构件
    溶胶-凝胶法 Ox/Ox 将陶瓷体、金属盐等调配制备料浆前驱体,将其水解、缩合等反应成为溶胶态,再将其填充至纤维预制体经聚合、脱水固化为凝胶态,反复上述操作至复合材料结构致密 工艺简单、制造成本低、制备温度低、纤维损伤小、基体组分均匀性高 制备周期长、产品体积收缩变化大、产品孔隙率较高
    下载: 导出CSV
  • [1] KAMMAN J,PERRYMAN D. Propulsion system requirements for advanced fighter aircraft[R]. AIAA1982-1143,1982.
    [2] RUED K. Future trends in aero engine design-new engine concepts and technology trends[R]. AIAA2003-2612,2003.
    [3] BALLAL D,ZELINA J. Progress in aero-engine technology,1939-2003 (invited)[R]. AIAA2003-4412,2003.
    [4] TIRPAK J A. The sixth generation fighter[J]. Air Force Magazine,2009,92(10): 38-42.
    [5] 刘勤,周人治,王占学. 军用航空发动机特征分析[J]. 燃气涡轮试验与研究,2014,27(2): 59-62. LIU Qin,ZHOU Renzhi,WANG Zhanxue. Characteristic analysis on military aero-engines[J]. Gas Turbine Experiment and Research,2014,27(2): 59-62. (in Chinese

    LIU Qin, ZHOU Renzhi, WANG Zhanxue. Characteristic analysis on military aero-engines[J]. Gas Turbine Experiment and Research, 2014, 27(2): 59-62. (in Chinese)
    [6] 杨金华,董禹飞,杨瑞,等. 航空发动机用陶瓷基复合材料研究进展[J]. 航空动力,2021(5): 56-59. YANG Jinhua,DONG Yufei,YANG Rui,et al. Progress of ceramic matrix composites for aero engine[J]. Aerospace Power,2021(5): 56-59. (in Chinese

    YANG Jinhua, DONG Yufei, YANG Rui, et al. Progress of ceramic matrix composites for aero engine[J]. Aerospace Power, 2021(5): 56-59. (in Chinese)
    [7] CHIN Jushan,DANG Jin. New generation aero combustor[M]. Vienna,Austria: Intech Open Access Publisher,2021.
    [8] HALBIG M,JASKOWIAK M,KISER J,et al. Evaluation of ceramic matrix composite technology for aircraft turbine engine applications[R]. AIAA2013-539,2013.
    [9] SUDER K,DELAAT J,HUGHES C,et al. NASA environmentally responsible aviation project’s propulsion technology: Phase Ⅰ overview and highlights of accomplishments[R]. AIAA2013-414,2013.
    [10] TSUJI Y F Y. Research and technology development of environmentally compatible propulsion system for next generation supersonic transport (ESPR project): Ⅲ final achievements[R]. Yokohama,Japan: 24th International Congress of Aeronautical Sciences,2004.
    [11] 林宏军,迟雪. 火焰筒先进热防护技术发展及工程应用分析[J]. 航空动力,2020(3): 66-70. LIN Hongjun,CHI Xue. Development and engineering application analysis of advanced thermal protection technology of flame tube[J]. Aerospace Power,2020(3): 66-70. (in Chinese

    LIN Hongjun, CHI Xue. Development and engineering application analysis of advanced thermal protection technology of flame tube[J]. Aerospace Power, 2020(3): 66-70. (in Chinese)
    [12] BHATIA T,JARMON D,SHI J,et al. CMC combustor liner demonstration in a small helicopter engine[R]. Glasgow,UK: ASME Turbo Expo 2010: Power for Land,Sea,and Air,2010.
    [13] 刘大响. 一代新材料,一代新型发动机: 航空发动机的发展趋势及其对材料的需求[J]. 材料工程,2017,45(10): 1-5. LIU Daxiang. One generation of new material,one generation of new type engine: development trend of aero-engine and its requirements for materials[J]. Journal of Materials Engineering,2017,45(10): 1-5. (in Chinese

    LIU Daxiang. One generation of new material, one generation of new type engine: development trend of aero-engine and its requirements for materials[J]. Journal of Materials Engineering, 2017, 45(10): 1-5. (in Chinese)
    [14] 杜昆,陈麒好,孟宪龙,等. 陶瓷基复合材料在航空发动机热端部件应用及热分析研究进展[J]. 推进技术,2022,43(2): 107-125. DU Kun,CHEN Qihao,MENG Xianlong,et al. Advancement in application and thermal analysis of ceramic matrix composites in aeroengine hot components[J]. Journal of Propulsion Technology,2022,43(2): 107-125. (in Chinese

    DU Kun, CHEN Qihao, MENG Xianlong, et al. Advancement in application and thermal analysis of ceramic matrix composites in aeroengine hot components[J]. Journal of Propulsion Technology, 2022, 43(2): 107-125. (in Chinese)
    [15] 张立同,成来飞,徐永东,等. 自愈合碳化硅陶瓷基复合材料研究及应用进展[J]. 航空材料学报,2006,26(3): 226-232. ZHANG Litong,CHENG Laifei,XU Yongdong,et al. Progress on self-healing silicon carbide ceramic matrix composites and its applications[J]. Journal of Aeronautical Materials,2006,26(3): 226-232. (in Chinese

    ZHANG Litong, CHENG Laifei, XU Yongdong, et al. Progress on self-healing silicon carbide ceramic matrix composites and its applications[J]. Journal of Aeronautical Materials, 2006, 26(3): 226-232. (in Chinese)
    [16] 焦健,陈明伟. 新一代发动机高温材料—陶瓷基复合材料的制备、性能及应用[J]. 航空制造技术,2014,57(7): 62-69. JIAO Jian,CHEN Mingwei. New generation of high-temperature material for engine—preparation,property and application of ceramic matrix composites[J]. Aeronautical Manufacturing Technology,2014,57(7): 62-69. (in Chinese

    JIAO Jian, CHEN Mingwei. New generation of high-temperature material for engine—preparation, property and application of ceramic matrix composites[J]. Aeronautical Manufacturing Technology, 2014, 57(7): 62-69. (in Chinese)
    [17] 刘毅佳,马拯. 陶瓷基复合材料界面相设计[J]. 固体火箭技术,2003,26(4): 60-63. LIU Yijia,MA Zheng. Design of the fiber/matrix interphase in ceramic matrix composite (CMC)[J]. Journal of Solid Rocket Technology,2003,26(4): 60-63. (in Chinese

    LIU Yijia, MA Zheng. Design of the fiber/matrix interphase in ceramic matrix composite (CMC)[J]. Journal of Solid Rocket Technology, 2003, 26(4): 60-63. (in Chinese)
    [18] 何新波,杨辉,张长瑞,等. 连续纤维增强陶瓷基复合材料概述[J]. 材料科学与工程,2002(2): 273-278,262. HE Xinbo,YANG Hui,ZHANG Changrui,et al. Review of continuous fiber reinforced ceramic matrix composites[J]. Materials Science and Engineering,2002(2): 273-278,262. (in Chinese

    HE Xinbo, YANG Hui, ZHANG Changrui, et al. Review of continuous fiber reinforced ceramic matrix composites[J]. Materials Science and Engineering, 2002(2): 273-278, 262. (in Chinese)
    [19] 宫声凯,尚勇,张继,等. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报,2019,55(9): 1067-1076. GONG Shengkai,SHANG Yong,ZHANG Ji,et al. Application and research of typical intermetallics-based high temperature structural materials in China[J]. Acta Metallurgica Sinica,2019,55(9): 1067-1076. (in Chinese

    GONG Shengkai, SHANG Yong, ZHANG Ji, et al. Application and research of typical intermetallics-based high temperature structural materials in China[J]. Acta Metallurgica Sinica, 2019, 55(9): 1067-1076. (in Chinese)
    [20] 刘巧沐,黄顺洲,刘佳,等. 高温材料研究进展及其在航空发动机上的应用[J]. 燃气涡轮试验与研究,2014,27(4): 51-56. LIU Qiaomu,HUANG Shunzhou,LIU Jia,et al. Progress and application of high temperature structural materials on aero-engine[J]. Gas Turbine Experiment and Research,2014,27(4): 51-56. (in Chinese

    LIU Qiaomu, HUANG Shunzhou, LIU Jia, et al. Progress and application of high temperature structural materials on aero-engine[J]. Gas Turbine Experiment and Research, 2014, 27(4): 51-56. (in Chinese)
    [21] 张立同,成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报,2007,24(2): 1-6. ZHANG Litong,CHENG Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica,2007,24(2): 1-6. (in Chinese

    ZHANG Litong, CHENG Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007, 24(2): 1-6. (in Chinese)
    [22] 梁春华. 纤维增强陶瓷基复合材料在国外航空发动机上的应用[J]. 航空制造技术,2006,49(3): 40-45. LIANG Chunhua. Application of fiber reinforced ceramic matrix composites in foreign aero-engines[J]. Aeronautical Manufacturing Technology,2006,49(3): 40-45. (in Chinese

    LIANG Chunhua. Application of fiber reinforced ceramic matrix composites in foreign aero-engines[J]. Aeronautical Manufacturing Technology, 2006, 49(3): 40-45. (in Chinese)
    [23] EVANS A G,MARSHALL D B. The mechanical behavior of ceramic matrix composites[C]//Proceedings of The 7th International Conference On Fracture (ICF7). Amsterdam,Netherlands: Elsevier,1989: 3593-3641.
    [24] LANE J E,MORRISON J A,MARINI B,et al. Hybrid oxide-based CMCs for combustion turbines: how hybrid oxide CMC mitigates the design hurdles typically seen for oxide CMC[C]//Proceedings of ASME Turbo Expo 2007: Power for Land,Sea,and Air. Montreal,US: American Society of Mechanical Engineers,2009: 267-273.
    [25] HÖNIG S,SÜß F,JAIN N,et al. Evaluation of preparation and combustion rig tests of an effusive cooled SiC/SiCN panel[J]. International Journal of Applied Ceramic Technology,2020,17(4): 1562-1573. doi: 10.1111/ijac.13501
    [26] VAN ROODE M,PRICE J,KIMMEL J,et al. Ceramic matrix composite combustor liners: a summary of field evaluations[C]//Proceedings of ASME Turbo Expo 2005: Power for Land,Sea,and Air. Reno,US: American Society of Mechanical Engineers,2008: 283-292.
    [27] VAN ROODE M,PRICE J,KIMMEL J,et al. Ceramic matrix composite combustor liners: a summary of field evaluations[J]. Journal of Engineering for Gas Turbines and Power,2007,129(1): 21-30. doi: 10.1115/1.2181182
    [28] VAN ROODE M,BHATTACHARYA A,FERBER M K. Durability prediction of alumina- and YAG-based CMC combustor liners[C]//Proceedings of ASME Turbo Expo 2009: Power for Land,Sea and Air. Orlando,US: American Society of Mechanical Engineers Digital Collection,2010: 273-287.
    [29] VAN ROODE M,BHATTACHARYA A K. Durability of oxide/oxide CMCs in gas turbine combustors[C]//Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Copenhagen,Denmark: American Society of Mechanical Engineers,2012: 475-485.
    [30] GERENDÁS M,CADORET Y,WILHELMI C,et al. Improvement of oxide/oxide CMC and development of combustor and turbine components in the HiPOC program[C]//Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Vancouver,Canada: 2011: 477-490.
    [31] 陈明伟,谢巍杰,邱海鹏. 连续碳化硅纤维增强碳化硅陶瓷基复合材料研究进展[J]. 现代技术陶瓷,2016,37(6): 393-402. CHEN Mingwei,XIE Weijie,QIU Haipeng. Recent progress in continuous SiC fiber reinforced SiC ceramic matrix composites[J]. Advanced Ceramics,2016,37(6): 393-402. (in Chinese

    CHEN Mingwei, XIE Weijie, QIU Haipeng. Recent progress in continuous SiC fiber reinforced SiC ceramic matrix composites[J]. Advanced Ceramics, 2016, 37(6): 393-402. (in Chinese)
    [32] SZWEDA A,BUTNER S,RUFFONI J,et al. Development and evaluation of hybrid oxide/oxide ceramic matrix composite combustor liners[C]// Proceedings of ASME Turbo Expo 2005: Power for Land,Sea,and Air. Reno-Tahoe,US: American Society of Mechanical Engineers,2005: 315-321.
    [33] VAN ROODE M,PRICE J,OTSUKA J,et al. 25,000-hour hybrid oxide CMC field test summary[C]//Proceedings of ASME Turbo Expo 2008: Power for Land,Sea,and Air. Berlin,Germany: American Society of Mechanical Engineers,2008: 289-296.
    [34] 钟辛子,曹丽云,黄剑锋,等. 氧化物纤维增强氧化物陶瓷基复合材料的研究进展[J]. 陕西科技大学学报,2022,40(4): 121-133. ZHONG Xinzi,CAO Liyun,HUANG Jianfeng,et al. Research progress of oxide ceramic matrix composites reinforced by oxide fiber[J]. Journal of Shaanxi University of Science & Technology,2022,40(4): 121-133. (in Chinese

    ZHONG Xinzi, CAO Liyun, HUANG Jianfeng, et al. Research progress of oxide ceramic matrix composites reinforced by oxide fiber[J]. Journal of Shaanxi University of Science & Technology, 2022, 40(4): 121-133. (in Chinese)
    [35] PREWO K,BRENNAN J,LAYDEN G. Fiber reinforced glasses and glass-ceramics for high performance applications[J]. American Ceramic Society Bulletin,1986,65: 305-322.
    [36] CARMINATI P,JACQUES S,REBILLAT F. Oxidation/corrosion of BN-based coatings as prospective interphases for SiC/SiC composites[J]. Journal of the European Ceramic Society,2021,41(5): 3120-3131. doi: 10.1016/j.jeurceramsoc.2020.07.056
    [37] KIM D P,GOFER C G,ECONOMY J. Fabrication and properties of ceramic composites with a boron nitride matrix[J]. Journal of the American Ceramic Society,1995,78(6): 1546-1552. doi: 10.1111/j.1151-2916.1995.tb08850.x
    [38] LACOMBE A,SPRIET P,HABAROU G,et al. Ceramic matrix composites to make breakthroughs in aircraft engine performance[R]. AIAA2009-2675,2009.
    [39] DICARLO J A,VAN ROODE M. Ceramic composite development for gas turbine engine hot section components[C]//Proceedings of ASME Turbo Expo 2006: Power for Land,Sea,and Air. Barcelona,Spain: American Society of Mechanical Engineers,2006: 221-231.
    [40] MISRA A K. Development of advanced engine materials in NASA ultra efficient engine technology program[R]. Bangalore,US: 15th International Symposium on Air Breathing Engines Conference,2001.
    [41] PADTURE N P. Advanced structural ceramics in aerospace propulsion[J]. Nature Materials,2016,15: 804-809. doi: 10.1038/nmat4687
    [42] DIAZ O G,MARQUARDT K,HARRIS S,et al. Degradation mechanisms of SiC/BN/SiC after low temperature humidity exposure[J]. Journal of the European Ceramic Society,2020,40(12): 3863-3874. doi: 10.1016/j.jeurceramsoc.2020.05.007
    [43] KATOH Y,SNEAD L L,HENAGER C H,et al. Current status and recent research achievements in SiC/SiC composites[J]. Journal of Nuclear Materials,2014,455(1/2/3): 387-397.
    [44] VAN ROODE M,BHATTACHARYA A K,FERBER M K,et al. Creep resistance and water vapor degradation of SiC/SiC ceramic matrix composite gas turbine hot section components[C]//Proceedings of ASME Turbo Expo 2010: Power for Land,Sea and Air. Glasgow,UK: American Society of Mechanical Engineers,2010: 455-469.
    [45] MORE K L,WALKER L R,WANG Yanli,et al. Microstructural and mechanical characterization of a hybrid oxide CMC combustor liner after 25000-hour engine test[C]// Proceedings of ASME Turbo Expo 2009: Power for Land,Sea,and Air. Orlando,US: American Society of Mechanical Engineers,2009: 255-263.
    [46] NISHIO K,IGASHIRA K I,TAKE K,et al. Development of a combustor liner composed of ceramic matrix composite (CMC)[J]. Journal of Engineering for Gas Turbines and Power,1999,121(1): 12-17. doi: 10.1115/1.2816300
    [47] SUZUKI Y,SATOH T,KAWANO M,et al. Combustion test results of an uncooled combustor with ceramic matrix composite liner[J]. Journal of Engineering for Gas Turbines and Power,2003,125(1): 28-33. doi: 10.1115/1.1501916
    [48] MATSUDA Y,AKIKAWA N,SATOH T. Manufacturing of 3-D woven SicF\Sic composite combustor liner[M]//25th Annual Conference on Composites,Advanced Ceramics,Materials,and Structures: A ceramic engineering and science proceedings. Hoboken,US: John Wiley & Sons,2008: 463-470.
    [49] IGASHIRA K,MATSUDA Y,MATSUBARA G. Mechanical properties of Si-Zr-C-O/SiC composite material for advanced heat resistance combustor liner[M]//27th Annual Cocoa Beach Conference on Advanced Ceramics and Composites: B ceramic engineering and science proceedings. Hoboken,US: John Wiley & Sons,2008: 593-598.
    [50] GERENDÁS M,WILHELMI C,MACHRY T,et al. Development and validation of oxide/oxide CMC combustors within the HiPOC program[R]. San Antonio,US: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition,2013.
    [51] KNOCHE R,WERTH E,WETH M A,et al. Design and development approach for gas turbine combustion chambers made of oxide ceramic matrix composites s[M]//Mechanical properties and performance of engineering ceramics and composites Ⅵ. Hoboken,US: John Wiley & Sons,2011: 77-87.
    [52] BEHRENDT T,HACKEMANN S,MECHNICH P,et al. Development and test of oxide/oxide ceramic matrix composites combustor liner demonstrators for aero-engines[J]. Journal of Engineering for Gas Turbines and Power,2017,139(3): 031507. doi: 10.1115/1.4034515
    [53] ZHANG Litong,CHENG Laifei,LUAN Xingang,et al. Environmental performance testing system for thermostructure materials applied in aeroengines[J]. Key Engineering Materials,2006,313: 183. doi: 10.4028/www.scientific.net/KEM.313.183
    [54] 李功,高云峰,李长林. 陶瓷基复合材料浮动壁燃烧室应用进展及结构方案探讨[J]. 航空维修与工程,2006(2): 36-38. LI Gong,GAO Yunfeng,LI Changlin. Advances in application of ceramic-matrixed composite on floating pit combustion chamber[J]. Aviation Maintenance & Engineering,2006(2): 36-38. (in Chinese

    LI Gong, GAO Yunfeng, LI Changlin. Advances in application of ceramic-matrixed composite on floating pit combustion chamber[J]. Aviation Maintenance & Engineering, 2006(2): 36-38. (in Chinese)
    [55] TIAN Tian,COLE K D. Anisotropic thermal conductivity measurement of carbon-fiber/epoxy composite materials[J]. International Journal of Heat and Mass Transfer,2012,55(23/24): 6530-6537.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  174
  • HTML浏览量:  84
  • PDF量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-29
  • 网络出版日期:  2024-03-27

目录

    /

    返回文章
    返回