Effect of valve opening time difference on working process of 150 N hypergolic propellant liquid rocket engine
-
摘要:
为了研究阀门较大开启时差对采用自燃推进剂的空间液体火箭发动机工作过程的影响,对150 N发动机开展高空模拟热试车,考察了氧阀、燃阀分别先开40、100、500、1 000 ms对发动机工作稳定性、点火推力峰值和响应时间的影响。试验结果表明,发动机均可以成功点火,稳定后的推力值基本不变。氧阀先开、燃阀先开时的点火推力峰值分别约为稳定推力的1.01~1.05倍和 1.04~1.07倍,与两阀同步信号开启时相当。燃阀先开时,启动响应时间延长了约16 ms。阀门单独打开时,氧化剂发生了充分闪蒸,流场中部夹杂冰粒喷出,燃料发生了部分闪蒸。当阀门开启时差达到500、1 000 ms时,氧阀、燃阀单独打开过程中,输出推力分别约11、6 N,分别占稳定推力的7%和4%,且后者输出推力呈现波动下降的趋势。
Abstract:In order to study the effect of the valve opening time difference on the working process of the space liquid rocket engine using hypergolic propellants, the high-altitude simulated thermal test of a 150 N engine was carried out. The engine working stability, ignition thrust peak and response time were investigated when the oxidant valve and fuel valve were opened 40, 100, 500,
1000 ms in advance, respectively. The test results showed that the engine can be successfully ignited, and the thrust after stabilization was basically unchanged. When the oxidant valve and the fuel valve were opened first, the ignition thrust peak of the engine was about 1.01—1.05 times and 1.04—1.07 times of the stable thrust, respectively, which was equivalent to the opening of the two-way valve synchronous signal. When the fuel valve was opened first, the startup response time was extended by about 16 ms. When the valve was opened alone, the oxidant was fully vaporized, the ice particles were ejected in the middle area of the flow field, and the fuel was partially vaporized. When the valve opening time difference reached 500 ms and1000 ms, while the oxidant valve and the fuel valve were opened separately, the output thrust of the engine was about 11 N and 6 N, respectively, accounting for 7% and 4% of the stable thrust respectively, and the output thrust of the latter fluctuated and kept falling. -
表 1 150 N发动机理论设计参数
Table 1. Theoretical design parameters of 150 N engine
真空推力/N 氧化剂质量流量/(g/s) 燃料质量流量/(g/s) 150 32.15 19.48 表 2 高空模拟热试车工况
Table 2. Condition of high-altitude simulated thermal test
序号 工况 真空推力/N 氧化剂入口压力/MPa 燃料入口压力/MPa 试车程序 1# 正常同步开启 150 1.36 1.30 30 s 2# 氧阀先开40 ms 150 1.36 1.30 2 s×100 3# 氧阀先开100 ms 150 1.36 1.30 2 s×100 4# 氧阀先开500 ms 150 1.36 1.30 2 s×100 5# 氧阀先开 1000 ms150 1.36 1.30 2 s×100 6# 燃阀先开40 ms 150 1.36 1.30 2 s×100 7# 燃阀先开100 ms 150 1.36 1.30 2 s×100 8# 燃阀先开500 ms 150 1.36 1.30 2 s×100 9# 燃阀先开 1000 ms150 1.36 1.30 2 s×100 表 3 不同阀门开启时差下发动机工作参数
Table 3. Engine operating parameters under different valve opening time differences
序号 工况 推力均值/N 推力峰均值/MPa 推力峰最大值/MPa 发动机启动时间/ms 发动机关闭时间/ms 试车程序 1# 正常同步开启 152.4 160.5 160.5 68 81 30 s 2# 氧阀先开40 ms 151.3 158.4 159.9 71 82 2 s×100 3# 氧阀先开100 ms 152.6 154.1 155.5 67 82 2 s×100 4# 氧阀先开500 ms 153.7 157.9 158.8 68 82 2 s×100 5# 氧阀先开 1000 ms153.8 158.5 159.6 71 74 2 s×100 6# 燃阀先开40 ms 152.0 159.8 162.0 87 82 2 s×100 7# 燃阀先开100 ms 153.2 160.4 162.1 89 83 2 s×100 8# 燃阀先开500 ms 153.8 160.5 161.7 86 76 2 s×100 9# 燃阀先开1 000 ms 153.4 164.1 164.9 81 72 2 s×100 表 4 不同工况下发动机身部温度变化结果
Table 4. Results of engine body temperature under different working conditions
序号 工况 温度/℃ 试车程序 直线段 喉部 1# 正常同步开启 1165 1096 30 s 2# 氧阀先开40 ms 1009 832 2 s×100 3# 氧阀先开100 ms 1017 831 2 s×100 4# 氧阀先开500 ms 947 832 2 s×100 5# 氧阀先开 1000 ms872 831 2 s×100 6# 燃阀先开40 ms 1051 831 2 s×100 7# 燃阀先开100 ms 1003 830 2 s×100 8# 燃阀先开500 ms 970 830 2 s×100 9# 燃阀先开 1000 ms888 830 2 s×100 -
[1] 钱海涵,夏芳. 空间发动机真空起动点火时差及其实现方法[J]. 上海航天,1998,15(6): 28-32. QIAN Haihan,XIA Fang. The ingnition time difference and its realizable methods for spacecraft engine[J]. Aerospace Shanghai,1998,15(6): 28-32. (in ChineseQIAN Haihan, XIA Fang. The ingnition time difference and its realizable methods for spacecraft engine[J]. Aerospace Shanghai, 1998, 15(6): 28-32. (in Chinese) [2] 李平,王衍方. 四氧化二氮和肼推进剂点火过程的试验研究[J]. 火箭推进,1996,22(1): 1-5. LI Ping,WANG Yanfang. Experimental study on ignition process of nitrogen tetroxide and hydrazine propellants[J]. Journal of Rocket Propulsion,1996,22(1): 1-5. (in ChineseLI Ping, WANG Yanfang. Experimental study on ignition process of nitrogen tetroxide and hydrazine propellants[J]. Journal of Rocket Propulsion, 1996, 22(1): 1-5. (in Chinese) [3] SUTTON G P. History of liquid propellant rocket engines in the United States[J]. Journal of Propulsion and Power,2003,19(6): 978-1007. doi: 10.2514/2.6942 [4] 俞肇铭. R-4D双组元姿控发动机的研制(四): 空间点火特性[J]. 现代防御技术,1982,10(5): 40-53. YU Zhaoming. Development of R-4D bicomponent attitude control engine (Ⅳ): space ignition characteristics[J]. Modern Defense Technology,1982,10(5): 40-53. (in ChineseYU Zhaoming. Development of R-4D bicomponent attitude control engine (Ⅳ): space ignition characteristics[J]. Modern Defense Technology, 1982, 10(5): 40-53. (in Chinese) [5] 刘昌国,陈锐达,刘犇,等. 小推力空间液体火箭发动机夹气启动特性[J]. 火箭推进,2021,47(3): 8-15. LIU Changguo,CHEN Ruida,LIU Ben,et al. Start-up characteristics of low-thrust space liquid rocket engine with entrained gas[J]. Journal of Rocket Propulsion,2021,47(3): 8-15. (in ChineseLIU Changguo, CHEN Ruida, LIU Ben, et al. Start-up characteristics of low-thrust space liquid rocket engine with entrained gas[J]. Journal of Rocket Propulsion, 2021, 47(3): 8-15. (in Chinese) [6] 杨立军,富庆飞. 液体火箭发动机推力室设计[M]. 北京: 北京航空航天大学出版社,2013. [7] 蔡国飙,李家文,田爱梅,等. 液体火箭发动机设计[M]. 北京: 北京航空航天大学出版社,2011. [8] KIM B,HONG M,LEE J,et al. Experimental investigation on water hammer phenomenon in the recirculation line of a liquid rocket engine[J]. Journal of the Korean Society of Propulsion Engineers,2021,25(2): 110-118. doi: 10.6108/KSPE.2021.25.2.110 [9] 汪凤山,姚兆普,刘阳,等. 甲基肼/四氧化二氮发动机脉冲工况仿真与试验研究[J]. 空间控制技术与应用,2021,47(4): 56-62. WANG Fengshan,YAO Zhaopu,LIU Yang,et al. Numerical and experimental analysis of pulse mode characteristics in a MMH/NTO rocket engine[J]. Aerospace Control and Application,2021,47(4): 56-62. (in ChineseWANG Fengshan, YAO Zhaopu, LIU Yang, et al. Numerical and experimental analysis of pulse mode characteristics in a MMH/NTO rocket engine[J]. Aerospace Control and Application, 2021, 47(4): 56-62. (in Chinese) [10] 张黎辉,李家文,张雪梅,等. 航天器推进系统发动机动态特性研究[J]. 航空动力学报,2004,19(4): 546-549. ZHANG Lihui,LI Jiawen,ZHANG Xuemei,et al. Dynamic characteristics study of spacecraft propulsion system engine[J]. Journal of Aerospace Power,2004,19(4): 546-549. (in ChineseZHANG Lihui, LI Jiawen, ZHANG Xuemei, et al. Dynamic characteristics study of spacecraft propulsion system engine[J]. Journal of Aerospace Power, 2004, 19(4): 546-549. (in Chinese) [11] 陈宏玉,刘红军,陈建华. 补燃循环发动机强迫起动过程[J]. 航空动力学报,2015,30(12): 3010-3016. CHEN Hongyu,LIU Hongjun,CHEN Jianhua. Forced start-up procedure of a staged combustion cycle engine[J]. Journal of Aerospace Power,2015,30(12): 3010-3016. (in ChineseCHEN Hongyu, LIU Hongjun, CHEN Jianhua. Forced start-up procedure of a staged combustion cycle engine[J]. Journal of Aerospace Power, 2015, 30(12): 3010-3016. (in Chinese) [12] 陈一丹,陈宏玉,刘亚洲. 液体火箭发动机汽蚀建模与低入口压力起动过程仿真[J]. 航空动力学报,2022,37(8): 1654-1663. CHEN Yidan,CHEN Hongyu,LIU Yazhou. Cavitation modeling and start-up under-rated pressure simulation of liquid rocket engine[J]. Journal of Aerospace Power,2022,37(8): 1654-1663. (in ChineseCHEN Yidan, CHEN Hongyu, LIU Yazhou. Cavitation modeling and start-up under-rated pressure simulation of liquid rocket engine[J]. Journal of Aerospace Power, 2022, 37(8): 1654-1663. (in Chinese) [13] 苏龙斐,张黎辉,潘海林. 卫星推进系统发动机启动过程数值仿真[J]. 航空动力学报,2005,20(4): 698-701. SU Longfei,ZHANG Lihui,PAN Hailin. Numerical simulation on the starting process of satellite propulsion system[J]. Journal of Aerospace Power,2005,20(4): 698-701. (in ChineseSU Longfei, ZHANG Lihui, PAN Hailin. Numerical simulation on the starting process of satellite propulsion system[J]. Journal of Aerospace Power, 2005, 20(4): 698-701. (in Chinese) [14] 巴延涛,侯凌云,毛晓芳,等. 甲基肼/四氧化二氮反应化学动力学模型构建及分析[J]. 物理化学学报,2014,30(6): 1042-1048. BA Yantao,HOU Lingyun,MAO Xiaofang,et al. Construction and analysis of a chemical kinetic model for monomethylhydrazine/nitrogen tetroxide reactions[J]. Acta Physico-Chimica Sinica,2014,30(6): 1042-1048. (in Chinese doi: 10.3866/PKU.WHXB201404093BA Yantao, HOU Lingyun, MAO Xiaofang, et al. Construction and analysis of a chemical kinetic model for monomethylhydrazine/nitrogen tetroxide reactions[J]. Acta Physico-Chimica Sinica, 2014, 30(6): 1042-1048. (in Chinese) doi: 10.3866/PKU.WHXB201404093 [15] KARIMI H,NASSIRHARAND A,BEHESHTI M. Dynamic and nonlinear simulation of liquid-propellant engines[J]. Journal of Propulsion and Power,2003,19(5): 938-944. doi: 10.2514/2.6187 [16] 戴佳,黄敏超,沈赤兵,等. 双组元液体挤压推进系统启动过程时序分析[J]. 火箭推进,2006,32(2): 16-22. DAI Jia,HUANG Minchao,SHEN Chibing,et al. Startup process timing analysis of liquid bipropellant pressure-fed propulsion system[J]. Journal of Rocket Propulsion,2006,32(2): 16-22. (in ChineseDAI Jia, HUANG Minchao, SHEN Chibing, et al. Startup process timing analysis of liquid bipropellant pressure-fed propulsion system[J]. Journal of Rocket Propulsion, 2006, 32(2): 16-22. (in Chinese) [17] 杨林涛,沈赤兵. 基于正交试验设计的姿控发动机起动特性[J]. 火箭推进,2019,45(5): 38-44. YANG Lintao,SHEN Chibing. Numerical analysis on starting characteristics of attitude control engine based on orthogonal test design method[J]. Journal of Rocket Propulsion,2019,45(5): 38-44. (in ChineseYANG Lintao, SHEN Chibing. Numerical analysis on starting characteristics of attitude control engine based on orthogonal test design method[J]. Journal of Rocket Propulsion, 2019, 45(5): 38-44. (in Chinese) [18] 杨林涛,沈赤兵. 小推力推进系统启动过程仿真分析[J]. 导弹与航天运载技术,2019(5): 48-52. YANG Lintao,SHEN Chibing. Simulation analysis on start process of low-thrust propulsion system[J]. Missiles and Space Vehicles,2019(5): 48-52. (in ChineseYANG Lintao, SHEN Chibing. Simulation analysis on start process of low-thrust propulsion system[J]. Missiles and Space Vehicles, 2019(5): 48-52. (in Chinese) [19] 于杭健,彭兢,舒燕,等. 月面高温下推力器可靠性试验[J]. 中国空间科学技术,2021,41(6): 123-131. YU Hangjian,PENG Jing,SHU Yan,et al. Thruster reliability experiment under high temperature on lunar surface[J]. Chinese Space Science and Technology,2021,41(6): 123-131. (in ChineseYU Hangjian, PENG Jing, SHU Yan, et al. Thruster reliability experiment under high temperature on lunar surface[J]. Chinese Space Science and Technology, 2021, 41(6): 123-131. (in Chinese) [20] 庄杰. 液体火箭发动机高空试验台研制[D]. 上海: 上海交通大学,2009. ZHUANG Jie. Design for liquid rocket engine high altitude test-bed[D]. Shanghai: Shanghai Jiao Tong University,2009. (in ChineseZHUANG Jie. Design for liquid rocket engine high altitude test-bed[D]. Shanghai: Shanghai Jiao Tong University, 2009. (in Chinese) [21] 张奎好,王成刚. 变轨发动机大型高空模拟试验台[J]. 导弹与航天运载技术,2004(1): 57-60. ZHANG Kuihao,WANG Chenggang. Large altitude simulation test stand for orbit maneuver motor[J]. Missiles and Space Vehicles,2004(1): 57-60. (in ChineseZHANG Kuihao, WANG Chenggang. Large altitude simulation test stand for orbit maneuver motor[J]. Missiles and Space Vehicles, 2004(1): 57-60. (in Chinese) [22] 李钰潼,王玫,谭紫阳,等. 低蒸汽压燃料与四氧化二氮自燃特性研究[J]. 西安交通大学学报,2022,56(6): 34-39. LI Yutong,WANG Mei,TAN Ziyang,et al. Study on hypergolic characteristics of low vapor pressure fuels and nitrous oxide[J]. Journal of Xi’an Jiaotong University,2022,56(6): 34-39. (in ChineseLI Yutong, WANG Mei, TAN Ziyang, et al. Study on hypergolic characteristics of low vapor pressure fuels and nitrous oxide[J]. Journal of Xi’an Jiaotong University, 2022, 56(6): 34-39. (in Chinese) [23] 李进华,孙兆懿. 四氧化二氮胶体饱和蒸气压的测试及分析[J]. 火炸药学报,2007,30(1): 74-77. LI Jinhua,SUN Zhaoyi. Test and analysis of the saturated vapor pressure of dinitrogen tetroxide colloid[J]. Chinese Journal of Explosives & Propellants,2007,30(1): 74-77. (in ChineseLI Jinhua, SUN Zhaoyi. Test and analysis of the saturated vapor pressure of dinitrogen tetroxide colloid[J]. Chinese Journal of Explosives & Propellants, 2007, 30(1): 74-77. (in Chinese) [24] 刘昌国,赵婷,姚锋,等. 第二代490 N轨控发动机研制及在轨飞行验证[J]. 推进技术,2020,41(1): 49-57. LIU Changguo,ZHAO Ting,YAO Feng,et al. Development and on-orbit flight verification of the second generation 490 N liquid apogee engine[J]. Journal of Propulsion Technology,2020,41(1): 49-57. (in ChineseLIU Changguo, ZHAO Ting, YAO Feng, et al. Development and on-orbit flight verification of the second generation 490 N liquid apogee engine[J]. Journal of Propulsion Technology, 2020, 41(1): 49-57. (in Chinese) [25] 刘昌国,赵婷,陈锐达,等. 星用490 N发动机喷注器局部燃气泄漏试验[J]. 航空动力学报,2021,36(3): 664-672. LIU Changguo,ZHAO Ting,CHEN Ruida,et al. Test on injector local gas leakage of 490 N engine for satellites[J]. Journal of Aerospace Power,2021,36(3): 664-672. (in ChineseLIU Changguo, ZHAO Ting, CHEN Ruida, et al. Test on injector local gas leakage of 490 N engine for satellites[J]. Journal of Aerospace Power, 2021, 36(3): 664-672. (in Chinese) -