Supercritical pressure fuel cooling characteristics of ramjet nozzle
-
摘要:
在获取冲压发动机喷管典型热负荷及其换热边界条件的前提下,构建一种纵向带肋超临界压力燃油冷却多通道结构,对比分析了燃油流动方向、燃油流量(68~204 g/s)、燃油进口温度(300~640 K)、燃油超临界压力(3~5 MPa)对通道内超临界压力燃油的流动和换热特性影响。结果表明:超临界压力燃油消耗275 g/(s·m2),就能够将喷管壁面最高温度由2 986 K降低到1 200 K以下;燃油与喷管内燃气流动方向一致时,可充分利用燃油换热的入口段效应,降低喷管入口壁面高温,喷管进出口壁面温差减小,轴向热应力减小;燃油质量流量增加,冷却通道内表面传热系数提高,冷却效果提高,但是燃油压降逐渐增加;燃油进口温度过高会使通道近壁处流体的热扩散系数急剧增大,造成传热恶化,存在某一最佳进口温度使燃油压降最低;在燃油进口温度较低的情况下,燃气侧壁面温度和燃油压降随燃油压力变化不敏感。
Abstract:On the premise of obtaining typical heat load of the ramjet nozzle and its heat transfer boundary conditions, a longitudinally ribbed supercritical pressure fuel cooling multi-channel structure was constructed, the effects of fuel flow direction, fuel flow (68—204 g/s), fuel inlet temperature (300—640 K), fuel supercritical pressure (3—5 MPa) on the flow and heat transfer characteristics of supercritical pressure fuel in the channel were compared and analyzed. The results showed that: the supercritical pressure fuel consumption was 275 g/(s·m2), the maximum temperature of the nozzle wall can be reduced from 2 986 K to below 1 200 K; when the fuel and gas flow in the nozzle were in the same direction, the inlet section effect of the fuel heat exchange can be fully utilized to reduce the high temperature of the nozzle inlet wall, the temperature difference between the nozzle inlet and outlet walls was reduced, and the axial thermal stress can be reduced; the fuel mass flow increased, the surface heat transfer coefficient in the cooling channel increased, and the cooling effect improved, but the fuel pressure drop gradually increased; if the fuel inlet temperature was too high, the thermal diffusivity of the fluid near the channel wall increased sharply, resulting in heat transfer deterioration, then there was an optimal inlet temperature to minimize the fuel pressure drop; when the fuel inlet temperature was low, the gas side wall surface temperature and fuel pressure drop were not sensitive to the change of fuel pressure.
-
表 1 喷管壁面边界条件及编号
Table 1. Nozzle wall boundary conditions and labels
算例 边界条件 燃气侧壁面 外侧壁 其他壁面 1 绝热 绝热 绝热 2 流固耦合 自然对流+热辐射 绝热 表 2 不同燃油流动方向燃气侧壁面温度
Table 2. Temperatures of the gas side wall in different fuel flow directions
燃油流动方向 最高温度/K 最低温度/K 平均温度/K 顺流 1033 555 693 逆流 1133 351 594 表 3 不同燃油质量流量燃气侧壁面温度及冷却燃油量
Table 3. Temperatures and cooling fuel quantity of the gas side wall in different fuel mass flow
$ \dot{m} $/(g/s) 最高温度/K 最低温度/K 平均温度/K Gw/(g/(s·m2)) 68 1097 628 765 275 102 1033 555 693 413 136 998 513 652 551 170 974 485 624 688 204 958 463 603 972 表 4 不同燃油进口温度下的燃气侧壁面温度
Table 4. Temperatures of the gas side wall with different fuel inlet temperatures
Tin/K 最高温度/K 最低温度/K 平均温度/K 300 1033 555 693 400 1063 608 738 500 1100 672 791 600 1152 732 855 640 1184 763 887 表 5 不同燃油压力下的燃气侧壁面温度
Table 5. Temperatures of the gas side wall with differentfuel pressures
p/MPa 最高温度/K 最低温度/K 平均温度/K 3 1033 555 693 4 1035 561 699 5 1036 565 702 -
[1] 徐惊雷. 超燃冲压及TBCC组合循环发动机尾喷管设计方法研究进展[J]. 推进技术,2018,39(10): 2236-2251. XU Jinglei. Research progress of nozzle design method for scramjet and turbine based combined cycle[J]. Journal of Propulsion Technology,2018,39(10): 2236-2251. (in ChineseXU Jinglei. Research progress of nozzle design method for scramjet and turbine based combined cycle[J]. Journal of Propulsion Technology, 2018, 39(10): 2236-2251. (in Chinese) [2] CURRAN E T,MURTHY S N B. Scramjet propulsion[M]. Reston,US: AIAA,2000. [3] KAZMAR R R. Airbreathing hypersonic propulsion at Pratt & Whitney: overview[R]. AIAA-2005-3256,2005. [4] SERRE L,FALEMPIN F. Promethee-the French military hypersonic propulsion program[R]. AIAA-2003-6950,2003. [5] KOBAYASHI S,MAITA M. Japanese spaceplane program over-view[R]. AIAA-1995-6002,1995. [6] 李旭彦,郑星,薛瑞. 超燃冲压发动机技术发展现状及相关建议[J]. 科技中国,2019(2): 5-8. LI Xuyan,ZHENG Xing,XUE Rui. Development status of scramjet technology and related suggestions[J]. China Scitechnology Business,2019(2): 5-8. (in ChineseLI Xuyan, ZHENG Xing, XUE Rui. Development status of scramjet technology and related suggestions[J]. China Scitechnology Business, 2019(2): 5-8. (in Chinese) [7] 章思龙,秦江,周伟星,等. 高超声速推进再生冷却研究综述[J]. 推进技术,2018,39(10): 2177-2190. ZHANG Silong,QIN Jiang,ZHOU Weixing,et al. Review on regenerative cooling technology of hypersonic propulsion[J]. Journal of Propulsion Technology,2018,39(10): 2177-2190. (in ChineseZHANG Silong, QIN Jiang, ZHOU Weixing, et al. Review on regenerative cooling technology of hypersonic propulsion[J]. Journal of Propulsion Technology, 2018, 39(10): 2177-2190. (in Chinese) [8] 肖红雨,高峰,李宁. 再生冷却技术在超燃冲压发动机中的应用与发展[J]. 飞航导弹,2013(8): 78-81. XIAO Hongyu,GAO Feng,LI Ning. Application and development of regenerative cooling technology in scramjet[J]. Aerodynamic Missile Journal,2013(8): 78-81. (in ChineseXIAO Hongyu, GAO Feng, LI Ning. Application and development of regenerative cooling technology in scramjet[J]. Aerodynamic Missile Journal, 2013(8): 78-81. (in Chinese) [9] 黄世璋,朱强华,高效伟. 碳氢燃料在波纹管内的超临界裂解传热特性[J]. 推进技术,2019,40(1): 95-106. HUANG Shizhang,ZHU Qianghua,GAO Xiaowei. Supercritical heat transfer characteristics of hydrocarbon fuel with pyrolysis in corrugated tubes[J]. Journal of Propulsion Technology,2019,40(1): 95-106. (in ChineseHUANG Shizhang, ZHU Qianghua, GAO Xiaowei. Supercritical heat transfer characteristics of hydrocarbon fuel with pyrolysis in corrugated tubes[J]. Journal of Propulsion Technology, 2019, 40(1): 95-106. (in Chinese) [10] 袁鑫,寇志海,赵国昌,等. 矩形通道超临界再生冷却技术研究综述[J]. 飞航导弹,2017(5): 18-23,42. YUAN Xin,KOU Zhihai,ZHAO Guochang,et al. Review on supercritical regenerative cooling technology in rectangular channel[J]. Aerodynamic Missile Journal,2017(5): 18-23,42. (in ChineseYUAN Xin, KOU Zhihai, ZHAO Guochang, et al. Review on supercritical regenerative cooling technology in rectangular channel[J]. Aerodynamic Missile Journal, 2017(5): 18-23, 42. (in Chinese) [11] HUANG Dan,RUAN Bo,WU Xiaoyu,et al. Experimental study on heat transfer of aviation kerosene in a vertical upward tube at supercritical pressures[J]. Chinese Journal of Chemical Engineering,2015,23(2): 425-434. doi: 10.1016/j.cjche.2014.10.016 [12] 贾洲侠,徐国强,闻洁,等. 超临界压力RP-3在竖直细圆管内混合对流研究[J]. 北京航空航天大学学报,2016,42(1): 152-157. JIA Zhouxia,XU Guoqiang,WEN Jie,et al. Investigation of mixed convection of supercritical pressure RP-3 in vertical round tube[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(1): 152-157. (in ChineseJIA Zhouxia, XU Guoqiang, WEN Jie, et al. Investigation of mixed convection of supercritical pressure RP-3 in vertical round tube[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1): 152-157. (in Chinese) [13] 黄世璋,阮波,高效伟. 超临界压力低温甲烷波纹管内强化换热数值研究[J]. 航空学报,2017,38(5): 120515. HUANG Shizhang,RUAN Bo,GAO Xiaowei. Numerical investigation of heat transfer enhancement of cryogenic-propellant methane in corrugated tubes at supercritical pressures[J]. Acta Aeronautica et Astronautica Sinica,2017,38(5): 120515. (in ChineseHUANG Shizhang, RUAN Bo, GAO Xiaowei. Numerical investigation of heat transfer enhancement of cryogenic-propellant methane in corrugated tubes at supercritical pressures[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5): 120515. (in Chinese) [14] 胡家瑛,王振国,潘余,等. 超燃冲压发动机U型冷却通道的流道方案[J]. 航空动力学报,2022,37(1): 11-25. HU Jiaying,WANG Zhenguo,PAN Yu,et al. Flow channel scheme of U-shaped cooling channel in scramjet[J]. Journal of Aerospace Power,2022,37(1): 11-25. (in ChineseHU Jiaying, WANG Zhenguo, PAN Yu, et al. Flow channel scheme of U-shaped cooling channel in scramjet[J]. Journal of Aerospace Power, 2022, 37(1): 11-25. (in Chinese) [15] 胡江玉,王宁,周进,等. 高温燃气与不同构型的再生冷却面板对流传热的数值模拟[J]. 国防科技大学学报,2021,43(5): 46-52. HU Jiangyu,WANG Ning,ZHOU Jin,et al. Numerical simulation on convective heat transfer between high-temperature gas and regenerative cooling panels of different configurations[J]. Journal of National University of Defense Technology,2021,43(5): 46-52. (in ChineseHU Jiangyu, WANG Ning, ZHOU Jin, et al. Numerical simulation on convective heat transfer between high-temperature gas and regenerative cooling panels of different configurations[J]. Journal of National University of Defense Technology, 2021, 43(5): 46-52. (in Chinese) [16] 黄玥,于佳佳,肖恒,等. 极限重力下冲压发动机再生冷却中燃油流动及传热特性研究[J]. 工程热物理学报,2021,42(8): 2097-2105. HUANG Yue,YU Jiajia,XIAO Heng,et al. Study on the flow and heat transfer characteristics of fuel in regenerative cooling system of scramjet engine under extreme gravity[J]. Journal of Engineering Thermophysics,2021,42(8): 2097-2105. (in ChineseHUANG Yue, YU Jiajia, XIAO Heng, et al. Study on the flow and heat transfer characteristics of fuel in regenerative cooling system of scramjet engine under extreme gravity[J]. Journal of Engineering Thermophysics, 2021, 42(8): 2097-2105. (in Chinese) [17] 杨成骁,王长辉,徐绍桐. 液体火箭发动机推力室再生冷却流动与传热计算研究[J]. 推进技术,2022,43(1): 239-245. YANG Chengxiao,WANG Changhui,XU Shaotong. Calculation study on flow and heat transfer of regenerative cooling in liquid rocket engine thrust chamber[J]. Journal of Propulsion Technology,2022,43(1): 239-245. (in ChineseYANG Chengxiao, WANG Changhui, XU Shaotong. Calculation study on flow and heat transfer of regenerative cooling in liquid rocket engine thrust chamber[J]. Journal of Propulsion Technology, 2022, 43(1): 239-245. (in Chinese) [18] 韩炜. 液体火箭发动机再生冷却推力室耦合传热的数值研究[D]. 哈尔滨: 哈尔滨工程大学,2017. HAN Wei. Numerical research on the coupled heat transfer of thrust chamber in cooling channel of liquid rocket[D]. Harbin: Harbin Engineering University,2017. (in ChineseHAN Wei. Numerical research on the coupled heat transfer of thrust chamber in cooling channel of liquid rocket[D]. Harbin: Harbin Engineering University, 2017. (in Chinese) [19] 孙冰,宋佳文. 液氧甲烷发动机台阶型冷却通道的耦合传热特性[J]. 航空动力学报,2016,31(12): 2972-2978. SUN Bing,SONG Jiawen. Coupled heat transfer characteristics of stepped cooling channel of liquid oxygen/methane rocket engine[J]. Journal of Aerospace Power,2016,31(12): 2972-2978. (in ChineseSUN Bing, SONG Jiawen. Coupled heat transfer characteristics of stepped cooling channel of liquid oxygen/methane rocket engine[J]. Journal of Aerospace Power, 2016, 31(12): 2972-2978. (in Chinese) [20] 李军伟,刘宇. 三维数值模拟再生冷却喷管的换热[J]. 推进技术,2005,26(2): 111-115. LI Junwei,LIU Yu. Three dimension numerical simulation of heat transfer in regeneratively cooled nozzle[J]. Journal of Propulsion Technology,2005,26(2): 111-115. (in ChineseLI Junwei, LIU Yu. Three dimension numerical simulation of heat transfer in regeneratively cooled nozzle[J]. Journal of Propulsion Technology, 2005, 26(2): 111-115. (in Chinese) [21] 李军伟,刘宇. 一种计算再生冷却推力室温度场的方法[J]. 航空动力学报,2004,19(4): 550-556. LI Junwei,LIU Yu. Method of computing temperature field in regeneratively-cooled thrust chamber[J]. Journal of Aerospace Power,2004,19(4): 550-556. (in ChineseLI Junwei, LIU Yu. Method of computing temperature field in regeneratively-cooled thrust chamber[J]. Journal of Aerospace Power, 2004, 19(4): 550-556. (in Chinese) [22] 王新竹,张泰昌,陆阳,等. 主动冷却燃烧室燃烧与传热耦合过程迭代分析设计方法[J]. 推进技术,2014,35(2): 213-219. WANG Xinzhu,ZHANG Taichang,LU Yang,et al. An iterative analysis and design method for study of coupling processes of combustion and heat transfer in actively-cooled scramjet combustor[J]. Journal of Propulsion Technology,2014,35(2): 213-219. (in ChineseWANG Xinzhu, ZHANG Taichang, LU Yang, et al. An iterative analysis and design method for study of coupling processes of combustion and heat transfer in actively-cooled scramjet combustor[J]. Journal of Propulsion Technology, 2014, 35(2): 213-219. (in Chinese) [23] FROELICH A,IMMICH H,LEBAIL F,et al. Three-dimensional flow analysis in a rocket engine coolant channel of high depth/width ratio[R]. AIAA-1991-2183,1991. [24] 戎毅,朱剑琴,戴武昊,等. 超燃冲压发动机冷却通道与燃烧室耦合传热数值研究[J]. 推进技术,2022,43(4): 173-182. RONG Yi,ZHU Jianqin,DAI Wuhao,et al. Numerical study on coupled heat transfer between cooling channel and combustor of scramjet[J]. Journal of Propulsion Technology,2022,43(4): 173-182. (in ChineseRONG Yi, ZHU Jianqin, DAI Wuhao, et al. Numerical study on coupled heat transfer between cooling channel and combustor of scramjet[J]. Journal of Propulsion Technology, 2022, 43(4): 173-182. (in Chinese) [25] 张靖周,常海萍. 传热学[M]. 2版. 北京: 科学出版社,2015. [26] 王明华,陈劲松. 发动机喷管内流场对流换热系数影响因素的数值分析[J]. 火箭推进,2011,37(3): 32-37. WANG Minghua,CHEN Jinsong. Numerical analysis of influence factor on convective heat transfer coefficient about nozzle internal flow[J]. Journal of Rocket Propulsion,2011,37(3): 32-37. (in ChineseWANG Minghua, CHEN Jinsong. Numerical analysis of influence factor on convective heat transfer coefficient about nozzle internal flow[J]. Journal of Rocket Propulsion, 2011, 37(3): 32-37. (in Chinese) [27] 刘友宏,郜晶晶. TBCC燃烧室/喷管一体化壁面温度计算[J]. 航空动力学报,2017,32(2): 257-267. LIU Youhong,GAO Jingjing. Wall temperature calculation on integrated combustion and nozzle in TBCC[J]. Journal of Aerospace Power,2017,32(2): 257-267. (in ChineseLIU Youhong, GAO Jingjing. Wall temperature calculation on integrated combustion and nozzle in TBCC[J]. Journal of Aerospace Power, 2017, 32(2): 257-267. (in Chinese) [28] TAO Zhi,CHENG Zeyuan,ZHU Jianqin,et al. Effect of turbulence models on predicting convective heat transfer to hydrocarbon fuel at supercritical pressure[J]. Chinese Journal of Aeronautics,2016,29(5): 1247-1261. doi: 10.1016/j.cja.2016.08.007 [29] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal,1994,32(8): 1598-1605. doi: 10.2514/3.12149 [30] 赵国柱,宋文艳,张若凌. 超临界压力下RP-3航空煤油吸热裂解反应的数值研究[J]. 航空学报,2014,35(6): 1513-1521. ZHAO Guozhu,SONG Wenyan,ZHANG Ruoling. Numerical study on thermal cracking of RP-3 aviation kerosene under supercritical pressure[J]. Acta Aeronautica et Astronautica Sinica,2014,35(6): 1513-1521. (in ChineseZHAO Guozhu, SONG Wenyan, ZHANG Ruoling. Numerical study on thermal cracking of RP-3 aviation kerosene under supercritical pressure[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6): 1513-1521. (in Chinese)