留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垂直微柱蒸发器干涸阈值模型求解及尺寸优化

高申宝 焦凤 何永清

高申宝, 焦凤, 何永清. 垂直微柱蒸发器干涸阈值模型求解及尺寸优化[J]. 航空动力学报, 2024, 39(9):20220723 doi: 10.13224/j.cnki.jasp.20220723
引用本文: 高申宝, 焦凤, 何永清. 垂直微柱蒸发器干涸阈值模型求解及尺寸优化[J]. 航空动力学报, 2024, 39(9):20220723 doi: 10.13224/j.cnki.jasp.20220723
GAO Shenbao, JIAO Feng, HE Yongqing. Model solving and size optimization of dryout threshold for vertical micropillar evaporators[J]. Journal of Aerospace Power, 2024, 39(9):20220723 doi: 10.13224/j.cnki.jasp.20220723
Citation: GAO Shenbao, JIAO Feng, HE Yongqing. Model solving and size optimization of dryout threshold for vertical micropillar evaporators[J]. Journal of Aerospace Power, 2024, 39(9):20220723 doi: 10.13224/j.cnki.jasp.20220723

垂直微柱蒸发器干涸阈值模型求解及尺寸优化

doi: 10.13224/j.cnki.jasp.20220723
基金项目: 国家自然科学基金(52366005);四川省科技创新人才项目(22CXRC0151)
详细信息
    作者简介:

    高申宝(1998-),男,硕士生,主要从事微纳尺度传热方面的研究。E-mail:1780729420@qq.com

    通讯作者:

    焦凤(1986-),女,副教授,博士,主要从事微通道内流体流动与强化传热方面的研究。E-mail:jiaofeng0526@163.com

  • 中图分类号: V231.1;TK124

Model solving and size optimization of dryout threshold for vertical micropillar evaporators

  • 摘要:

    对现有干涸阈值模型进行优化,加入重力的影响,并与毛细作用力和渗透率的求解方法进行组合,得到了平均误差约为7%的表征垂直微柱蒸发器换热性能的最佳组合模型(Darcy_avg(S)+SE)。利用该模型研究了微柱几何结构的影响,发现蒸发器最大换热能力在渗透率与毛细压力间平衡,几何尺寸接近最佳间距比(d/l≈0.35)及高的微柱对应更高的散热能力,具有更小后退接触角的微柱群对应更高的干涸阈值。重力作用下干涸长度的增加导致干涸阈值的显著降低,遗传算法能有效地用于求解不同干涸长度下的最优尺寸。排列方式影响干涸阈值,最佳间距比下叉排布置的微柱阵列较顺排布置换热能力提升近13%。

     

  • 图 1  蒸汽室结构示意图和圆柱形微柱阵列的蒸发器示意图

    Figure 1.  Schematic of the vapor chamber and an evaporator with cylindrical micropillars

    图 2  单元内热量传递及弯月面分区示意图

    Figure 2.  Schematic of heat transfer and partitioning of the meniscus within the unit cell

    图 3  不同模型组合与实验对照图

    Figure 3.  Control chart of different model combinations and experiments

    图 4  间距比对干涸阈值影响

    Figure 4.  Effect of spacing ratio on dryout threshold results

    图 5  不同后退接触角下干涸阈值变化

    Figure 5.  Variation of dryout threshold values at different receding contact angles

    图 6  不同干涸长度下干涸阈值随几何尺寸变化图

    Figure 6.  Variation of dryout threshold results with geometry for different dryout lengths

    图 7  干涸阈值随干涸长度变化图

    Figure 7.  Plot of dryout threshold results with dryout lengths

    图 8  不同干涸长度下的最优尺寸

    Figure 8.  Optimal dimensions for different dryout lengths

    图 9  微柱群不同排布示意图

    Figure 9.  Schematics of different rows of micropillar arrays

    图 10  相同几何尺寸下排列方式对干涸阈值影响

    Figure 10.  Effect of alignment on dryout threshold values for the same geometry

    表  1  24 水热物理参数表

    Table  1.   Table of thermophysical parameters of water at 24

    参数 数值
    σ/(N/m) 0.071
    μ/10−3(Pa·s) 0.89
    hfg/(kJ/kg) 2443.6
    ρ/(kg/m3 997
    下载: 导出CSV

    表  2  不同干涸长度下最优尺寸对应干涸阈值表

    Table  2.   Table of optimum sizes corresponding to dryout thresholds for different dryout lengths

    d/μm l/μm h/μm Q/W(L=2 cm) Q/W(L=3 cm) Q/W(L=4 cm)
    55 100 100 13.92 8.33 5.53
    54 96 100 13.82 8.37 5.65
    50 88 100 13.51 8.30 5.69
    注:表中加粗数据含义为三组尺寸纵向比较,可看出各组优化尺寸均对应着相应干涸长度下最大的干涸阈值。
    下载: 导出CSV
  • [1] MAHAJAN R,CHIU C P,CHRYSLER G. Cooling a microprocessor chip[J]. Proceedings of the IEEE,2006,94(8): 1476-1486. doi: 10.1109/JPROC.2006.879800
    [2] MAJUMDAR A. Helping chips to keep their cool[J]. Nature Nanotechnology,2009,4: 214-215. doi: 10.1038/nnano.2009.65
    [3] 刘萌,张超. 不同放电倍率下锂离子电池热效应分析研究[J]. 工业加热,2018,47(4): 1-3,11. LIU Meng,ZHANG Chao. Study on heating analysis of lithium battery for different discharge rates[J]. Industrial Heating,2018,47(4): 1-3,11. (in Chinese

    LIU Meng, ZHANG Chao. Study on heating analysis of lithium battery for different discharge rates[J]. Industrial Heating, 2018, 47(4): 1-3, 11. (in Chinese)
    [4] 李静静,陈萌. 锂动力电池电化学-热特性建模及仿真研究[J]. 森林工程,2020,36(6): 87-94. LI Jingjing,CHEN Meng. Modeling and simulation study of electrochemical and thermal characteristics of lithium power battery[J]. Forest Engineering,2020,36(6): 87-94. (in Chinese

    LI Jingjing, CHEN Meng. Modeling and simulation study of electrochemical and thermal characteristics of lithium power battery[J]. Forest Engineering, 2020, 36(6): 87-94. (in Chinese)
    [5] 苏存要,连文磊,郝鑫,等. 航空发动机附件综合热管理性能分析[J]. 航空动力学报,2022,37(9): 1896-1904. SU Cunyao,LIAN Wenlei,HAO Xin,et al. Analysis of integrated thermal management performance of aero-engine accessories[J]. Journal of Aerospace Power,2022,37(9): 1896-1904. (in Chinese

    SU Cunyao, LIAN Wenlei, HAO Xin, et al. Analysis of integrated thermal management performance of aero-engine accessories[J]. Journal of Aerospace Power, 2022, 37(9): 1896-1904. (in Chinese)
    [6] BERTIN J J,CUMMINGS R M. Fifty years of hypersonics: where we’ve been,where we’re going[J]. Progress in Aerospace Sciences,2003,39(6/7): 511-536.
    [7] 刘建,王清平 . 空天组合动力对先进结构热防护技术的需求分析[C]// 中国航天第三专业信息网第39届技术交流会暨第3届空天动力联合会议论文集. 河南 洛阳: 中国航天科工集团有限公司,2018: 11. LIU jian,WANG qingping. Analysis of the demand for advanced structural thermal protection technology from aerospace combined power[C]// Proceedings of the 39th Technical Exchange Conference of China Aerospace Third Professional Information Network and the 3rd Aerospace Power Joint Conference. Luoyang Henan: China Aerospace Science and Industry Corporation Limited (CASIC),2018: 11. (in Chinese

    LIU jian, WANG qingping. Analysis of the demand for advanced structural thermal protection technology from aerospace combined power[C]// Proceedings of the 39th Technical Exchange Conference of China Aerospace Third Professional Information Network and the 3rd Aerospace Power Joint Conference. Luoyang Henan: China Aerospace Science and Industry Corporation Limited (CASIC), 2018: 11. (in Chinese)
    [8] WEIBEL J A,GARIMELLA S V. Recent advances in vapor chamber transport characterization for high-heat-flux applications[J]. Advances in Heat Transfer,2013,45: 209-301.
    [9] YUAN Zihao,VAARTSTRA G,SHUKLA P,et al. Two-phase vapor chambers with micropillar evaporators: a new approach to remove heat from future high-performance chips[C]//Proceedings of 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Piscataway,US: IEEE,2019: 456-464.
    [10] ROJO G,DARABI J. Copper-carbon nanotube micropillars for passive thermal management of high heat flux electronic devices: ASME Paper HT2020-8998 [R]. New York: American Society of Mechanical Engineers,2020.
    [11] KARIYA H A,PETERS T B,CLEARY M,et al. Development and characterization of an air-cooled loop heat pipe with a wick in the condenser[J]. Journal of Thermal Science and Engineering Applications,2014,6(1): 011010. doi: 10.1115/1.4025049
    [12] WEIBEL J A,GARIMELLA S V,NORTH M T. Characterization of evaporation and boiling from sintered powder wicks fed by capillary action[J]. International Journal of Heat and Mass Transfer,2010,53(19/20): 4204-4215.
    [13] NAM Y,SHARRATT S,BYON C,et al. Fabrication and characterization of the capillary performance of superhydrophilic Cu micropost arrays[J]. Journal of Microelectromechanical Systems,2010,19(3): 581-588. doi: 10.1109/JMEMS.2010.2043922
    [14] WILKE K L,BARABADI B,ZHANG Tiejun,et al. Controlled wetting in nanoporous membranes for thin film evaporation[J]. Journal of Heat Transfer,2016,138(8): 080906. doi: 10.1115/1.4033827
    [15] ADERA S,ANTAO D,RAJ R,et al. Design of micropillar wicks for thin-film evaporation[J]. International Journal of Heat and Mass Transfer,2016,101: 280-294. doi: 10.1016/j.ijheatmasstransfer.2016.04.107
    [16] ZHU Yangying,ANTAO D S,LU Zhengmao,et al. Prediction and characterization of dry-out heat flux in micropillar wick structures[J]. Langmuir: the ACS Journal of Surfaces and Colloids,2016,32(7): 1920-1927. doi: 10.1021/acs.langmuir.5b04502
    [17] ANTAO D S,ADERA S,ZHU Yangying,et al. Dynamic evolution of the evaporating liquid-vapor interface in micropillar arrays[J]. Langmuir: the ACS Journal of Surfaces and Colloids,2016,32(2): 519-526. doi: 10.1021/acs.langmuir.5b03916
    [18] PETERSON G. An introduction to heat pipes: modeling,testing,and applications[M]. New York: Wiley,1994.
    [19] RAVI S,HORNER D,MOGHADDAM S. Monoporous micropillar wick structures,I-Mass transport characteristics[J]. Applied Thermal Engineering,2014,73(1): 1371-1377. doi: 10.1016/j.applthermaleng.2014.04.057
    [20] HORNER D,RAVI S,MOGHADDAM S. Monoporous micropillar wick structures,Ⅱ-optimization & theoretical limits[J]. Applied Thermal Engineering,2014,73(1): 1378-1386. doi: 10.1016/j.applthermaleng.2014.04.055
    [21] SOMASUNDARAM S,ZHU Yangying,LU Zhengmao,et al. Thermal design optimization of evaporator micropillar wicks[J]. International Journal of Thermal Sciences,2018,134: 179-187. doi: 10.1016/j.ijthermalsci.2018.07.036
    [22] WEI Mengyao,HE Bin,LIANG Qian,et al. Optimization and thermal characterization of uniform silicon micropillar based evaporators[J]. International Journal of Heat and Mass Transfer,2018,127: 51-60. doi: 10.1016/j.ijheatmasstransfer.2018.06.128
    [23] LIANG Qian,RAJ R,ADERA S,et al. Experiment and modeling of microstructured capillary wicks for thermal management of electronics[C]//Proceedings of IEEE 15th Electronics Packaging Technology Conference. Piscataway,US: IEEE,2013: 592-597.
    [24] ALHOSANI M H,ZHANG Tiejun. Dynamics of microscale liquid propagation in micropillar arrays[J]. Langmuir: the ACS Journal of Surfaces and Colloids,2017,33(26): 6620-6629. doi: 10.1021/acs.langmuir.7b01090
    [25] XIAO Rong,ENRIGHT R,WANG E N. Prediction and optimization of liquid propagation in micropillar arrays[J]. Langmuir: the ACS Journal of Surfaces and Colloids,2010,26(19): 15070-15075. doi: 10.1021/la102645u
    [26] XIAO Rong,WANG E N. Microscale liquid dynamics and the effect on macroscale propagation in pillar arrays[J]. Langmuir: the ACS Journal of Surfaces and Colloids,2011,27(17): 10360-10364. doi: 10.1021/la202206p
    [27] TANNER L H. The spreading of silicone oil drops on horizontal surfaces[J]. Journal of Physics D Applied Physics,1979,12(9): 1473-1484. doi: 10.1088/0022-3727/12/9/009
    [28] BYON C,KIM S J. The effect of meniscus on the permeability of micro-post arrays[J]. Journal of Micromechanics and Microengineering,2011,21(11): 115011. doi: 10.1088/0960-1317/21/11/115011
    [29] BYERS A,DARABI J. Capillary flow characteristics of a novel micropillar array for applications in capillary-driven two-phase cooling systems[C]// Proceedings of 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Piscataway,US: IEEE,2016: 37-42.
    [30] RANJAN R,PATEL A,GARIMELLA S V,et al. Wicking and thermal characteristics of micropillared structures for use in passive heat spreaders[J]. International Journal of Heat and Mass Transfer,2012,55(4): 586-596. doi: 10.1016/j.ijheatmasstransfer.2011.10.053
    [31] RYU S,LEE W,NAM Y. Heat transfer and capillary performance of dual-height superhydrophilic micropost wicks[J]. International Journal of Heat and Mass Transfer,2014,73: 438-444. doi: 10.1016/j.ijheatmasstransfer.2014.02.020
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  116
  • HTML浏览量:  114
  • PDF量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-25
  • 网络出版日期:  2024-02-29

目录

    /

    返回文章
    返回