Research and application of SST turbulence surrogate model based on neural network
-
摘要:
针对传统湍流模型参数众多且获取复杂流动数据慢的问题,研究多种神经网络算法用于求解超声速流动中雷诺平均(Navier-Stokes)求解器的湍流代理模型。以超声速流动条件下的凹槽为例,应用拉丁超立方抽样方法,获取标准SST湍流模型的9个参数样本空间;采用自主研发的高超声速内外流耦合数值模拟软件AHL3D,在来流马赫数为2.92下开展数值模拟,获得壁面压力数据,构建数据集;搭建了深度神经网络(deep neural networks, DNN)、残差神经网络(residual neural network, ResNet)、长短时记忆网络(long short-term memory, LSTM)等多种模型对数据集进行训练,从而形成SST湍流代理模型。实验结果表明:在给定SST湍流模型系数下,3种神经网络代理模型均能高精度地预测壁面压力,可决系数达到了0.99以上,与数值模拟求解器结果基本一致,可用于快速获取不同湍流模型参数下的壁面压力。
Abstract:In view of the problem that traditional turbulence model has many parameters and is slow to obtain complex flow data, various kinds of neural network algorithms were studied to construct the turbulence surrogate model of the Navier-Stokes solver in supersonic flow. The cavity under supersonic flow conditions was taken as the research object, and the Latin hypercube sampling method was used to obtain the sample space of nine parameters of the standard SST turbulence model. The independently developed hypersonic internal and external flow coupling numerical simulation software AHL3D was used to carry out numerical simulation at the incoming flow Mach number of 2.92 Ma to obtain the wall pressure data, and then the dataset was constructed. Various kinds of models such as deep neural networks (DNN), residual neural network (ResNet), and long short-term memory (LSTM), which were trained by the training dataset, were used to build the SST turbulence surrogate model. The experimental results showed that: under certain SST turbulence model parameters, these three neural network surrogate models can predict the wall pressure with high accuracy, and the coefficient of determination was above 0.99, which was basically consistent with the results of the numerical simulation solver, and can be used to quickly obtain the wall pressure under different turbulence model parameters.
-
Key words:
- cavity /
- SST turbulence surrogate model /
- neural networks /
- turbulence surrogate model /
- wall pressure
-
表 1 SST湍流模型系数及区间
Table 1. SST turbulence model parameters and intervals
系数 标称值 最小值 最大值 $ {\sigma _{{\text{k1}}}} $ 0.85 0.7 1.0 $ {\sigma _{{\text{k2}}}} $ 1.0 0.8 1.2 $ {\sigma _{{\text{w1}}}} $ 0.5 0.3 0.7 $ {\sigma _{{\text{w2}}}} $ 0.856 0.7 1.0 $ {\beta ^*}/{\beta _1} $ 1.20 1.19 1.31 $ {\beta ^*}/{\beta _2} $ 1.0870 1.05 1.45 $ \,{\beta ^*} $ 0.09 0.0776 0.1016 $ \kappa $ 0.41 0.38 0.42 $ {a_1} $ 0.31 0.31 0.40 -
[1] 王西耀,赵慧勇,谭宇. 基于壁面压力的试验参数分析方法[J]. 推进技术,2021,42(10): 2367-2376. WANG Xiyao,ZHAO Huiyong,TAN Yu. Parameter extracting method based on wall pressure[J]. Journal of Propulsion Technology,2021,42(10): 2367-2376. (in ChineseWANG Xiyao, ZHAO Huiyong, TAN Yu. Parameter extracting method based on wall pressure[J]. Journal of Propulsion Technology, 2021, 42(10): 2367-2376. (in Chinese) [2] 唐兰,徐惊雷,莫建伟,等. 基于壁面压力分布的非对称喷管反设计[J]. 航空动力学报,2017,32(6): 1515-1522. TANG Lan,XU Jinglei,MO Jianwei,et al. Reverse design of asymmetric nozzle based on given wall pressure distribution[J]. Journal of Aerospace Power,2017,32(6): 1515-1522. (in ChineseTANG Lan, XU Jinglei, MO Jianwei, et al. Reverse design of asymmetric nozzle based on given wall pressure distribution[J]. Journal of Aerospace Power, 2017, 32(6): 1515-1522. (in Chinese) [3] 浮强,宋文艳,王艳华,等. 超声速燃烧室壁面压力特征实验研究[J]. 推进技术,2018,39(7): 1633-1642. FU Qiang,SONG Wenyan,WANG Yanhua,et al. Experimental investigation on wall pressure characteristic in hypersonic combustor[J]. Journal of Propulsion Technology,2018,39(7): 1633-1642. (in ChineseFU Qiang, SONG Wenyan, WANG Yanhua, et al. Experimental investigation on wall pressure characteristic in hypersonic combustor[J]. Journal of Propulsion Technology, 2018, 39(7): 1633-1642. (in Chinese) [4] LI Jinping,MING Ma,CHAO Yan. Bayesian uncertainty analysis of SA turbulence model for backward-facing step simulations[J]. Journal of Physics: Conference Series,2021,1786(1): 012048. doi: 10.1088/1742-6596/1786/1/012048 [5] XIAO Heng, WU Jinlong, WANG Jianxun,et al. Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: a data-driven,physics-informed Bayesian approach[J]. Journal of Computational Physics,2016,324: 115-136. doi: 10.1016/j.jcp.2016.07.038 [6] MAULIK R,SAN O,RASHEED A,et al. Data-driven deconvolution for large eddy simulations of Kraichnan turbulence[J]. Physics of Fluids,2018,30(12): 125109. doi: 10.1063/1.5079582 [7] ZHANG Zejia, DURAISAMY K. Machine learning methods for data-driven turbulence modeling[C]//Proceedings of the 22nd AIAA Computational Fluid Dynamics Conference. Reston, US: AIAA, 2015:2460-2478. [8] ZHANG Jincheng,FU Song. An efficient approach for quantifying parameter uncertainty in the SST turbulence model[J]. Computers & Fluids,2019,181: 173-187. [9] ZHU Linyang,ZHANG Weiwei,KOU Jiaqing,et al. Machine learning methods for turbulence modeling in subsonic flows around airfoils[J]. Physics of Fluids,2019,31(1): 015105. doi: 10.1063/1.5061693 [10] DI STEFANO M A,HOSDER S,BAURLE R A. Effect of turbulence model uncertainty on scramjet isolator flowfield analysis[J]. Journal of Propulsion and Power,2020,36(1): 109-122. doi: 10.2514/1.B37597 [11] PANDA J P,WARRIOR H V. Data-driven prediction of complex flow field over an axisymmetric body of revolution using machine learning[J]. Journal of Offshore Mechanics and Arctic Engineering,2022,144(6): 060903. doi: 10.1115/1.4055280 [12] BRAHMACHARY S,BHAGYARAJAN A,OGAWA H. Fast estimation of internal flowfields in scramjet intakes via reduced-order modeling and machine learning[J]. Physics of Fluids,2021,33(10): 106110. doi: 10.1063/5.0064724 [13] MAULIK R,SHARMA H,PATEL S,et al. A turbulent eddy-viscosity surrogate modeling framework for Reynolds-averaged Navier-Stokes simulations[J]. Computers and Fluids,2021,227: 104777. [14] HORSTMAN C,SETTLES G,WILLIAMS D R,et al. A reattaching free shear layer in compressible turbulent flow: a comparison of numerical and experimental results: AIAA 81-0333 [R]. Reston,US: AIAA,1981. [15] LUO Dahai,YAN Chao,WANG Xiaoyong. Computational study of supersonic turbulent-separated flows using partially averaged Navier-stokes method[J]. Acta Astronautica,2015,107: 234-246. doi: 10.1016/j.actaastro.2014.11.029 [16] TIAN Yuyan,GAO Zhenxun,JIANG Chongwen,et al. A correction for Reynolds-averaged-Navier-Stokes turbulence model under the effect of shock waves in hypersonic flows[J]. International Journal for Numerical Methods in Fluids,2023,95(2): 313-333. doi: 10.1002/fld.5150 [17] 夏陈超,陈伟芳,郭中州,等. 隐式紧耦合SST和TNT湍流模型的高速流动数值模拟[J]. 航空动力学报,2015,30(4): 936-943. XIA Chenchao,CHEN Weifang,GUO Zhongzhou,et al. Numerical simulation of implicit fully coupled SST and TNT turbulence models for high speed flows[J]. Journal of Aerospace Power,2015,30(4): 936-943. (in ChineseXIA Chenchao, CHEN Weifang, GUO Zhongzhou, et al. Numerical simulation of implicit fully coupled SST and TNT turbulence models for high speed flows[J]. Journal of Aerospace Power, 2015, 30(4): 936-943. (in Chinese) [18] 张程,夏智勋,马超,等. 基于k-ω SST模型的同心筒发射装置流场数值模拟[J]. 航空动力学报,2019,34(11): 2331-2338. ZHANG Cheng,XIA Zhixun,MA Chao,et al. Numerical simulation of flow field of concentric canister launcher based on k-ω SST turbulence model[J]. Journal of Aerospace Power,2019,34(11): 2331-2338. (in ChineseZHANG Cheng, XIA Zhixun, MA Chao, et al. Numerical simulation of flow field of concentric canister launcher based on k-ω SST turbulence model[J]. Journal of Aerospace Power, 2019, 34(11): 2331-2338. (in Chinese) [19] 曾宇,汪洪波,孙明波,等. SST湍流模型改进研究综述[J]. 航空学报,2023,44(9): 027411. ZENG Yu,WANG Hongbo,SUN Mingbo,et al. SST turbulence model improvements: review[J]. Acta Aeronautica et Astronautica Sinica,2023,44(9): 027411. (in ChineseZENG Yu, WANG Hongbo, SUN Mingbo, et al. SST turbulence model improvements: review[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 027411. (in Chinese) [20] 韩省思,叶桃红,朱旻明,等. k-ε湍流模型可压缩性修正在超音速混合层中的应用研究[J]. 工程热物理学报,2007,28(6): 1053-1055. HAN Xingsi,YE Taohong,ZHU Minming,et al. An investigation of compressibility modification for k-ε turbulence model and application in supersonic mixing layers[J]. Journal of Engineering Thermophysics,2007,28(6): 1053-1055. (in ChineseHAN Xingsi, YE Taohong, ZHU Minming, et al. An investigation of compressibility modification for k-ε turbulence model and application in supersonic mixing layers[J]. Journal of Engineering Thermophysics, 2007, 28(6): 1053-1055. (in Chinese) [21] LI Yao,LI Jinping,ZENG Fanzhi,et al. Bayesian uncertainty quantification analysis of the SST model for transonic flow around airfoils simulation[J]. Aerospace Science and Technology,2023,137: 108273. doi: 10.1016/j.cja.2021.07.039 [22] PAWAR S,RAHMAN S M,VADDIREDDY H,et al. A deep learning enabler for nonintrusive reduced order modeling of fluid flows[J]. Physics of Fluids,2019,31(8): 085101. doi: 10.1063/1.5113494 [23] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway,US: IEEE,2016: 770-778. [24] 查雄,彭华,秦鑫,等. 基于循环神经网络的卫星幅相信号调制识别与解调算法[J]. 电子学报,2019,47(11): 2443-2448. ZHA Xiong,PENG Hua,QIN Xin,et al. Satellite amplitude-phase signals modulation identification and demodulation algorithm based on the cyclic neural network[J]. Acta Electronica Sinica,2019,47(11): 2443-2448. (in Chinese doi: 10.3969/j.issn.0372-2112.2019.11.029ZHA Xiong, PENG Hua, QIN Xin, et al. Satellite amplitude-phase signals modulation identification and demodulation algorithm based on the cyclic neural network[J]. Acta Electronica Sinica, 2019, 47(11): 2443-2448. (in Chinese) doi: 10.3969/j.issn.0372-2112.2019.11.029 [25] HAN Renkun,WANG Yixing,QIAN Weiqi,et al. Deep neural network based reduced-order model for fluid-structure interaction system[J]. Physics of Fluids,2022,34(7): 073610. doi: 10.1063/5.0096432 -