留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

逆特征线法的适用性分析

刘传振 孟旭飞 白鹏

刘传振, 孟旭飞, 白鹏. 逆特征线法的适用性分析[J]. 航空动力学报, 2024, 39(10):20220761 doi: 10.13224/j.cnki.jasp.20220761
引用本文: 刘传振, 孟旭飞, 白鹏. 逆特征线法的适用性分析[J]. 航空动力学报, 2024, 39(10):20220761 doi: 10.13224/j.cnki.jasp.20220761
LIU Chuanzhen, MENG Xufei, BAI Peng. Applicability of inverse method of characteristics[J]. Journal of Aerospace Power, 2024, 39(10):20220761 doi: 10.13224/j.cnki.jasp.20220761
Citation: LIU Chuanzhen, MENG Xufei, BAI Peng. Applicability of inverse method of characteristics[J]. Journal of Aerospace Power, 2024, 39(10):20220761 doi: 10.13224/j.cnki.jasp.20220761

逆特征线法的适用性分析

doi: 10.13224/j.cnki.jasp.20220761
基金项目: 国家自然科学基金(12271266)
详细信息
    作者简介:

    刘传振(1989-),男,高级工程师,博士,主要从事乘波体设计方面的研究

    通讯作者:

    白鹏(1973-),男,研究员,博士,主要从事高超声速气动布局设计方面的研究。E-mail:backleon60@163.com

  • 中图分类号: V211.5

Applicability of inverse method of characteristics

  • 摘要:

    使用逆特征线法(iMoC)由给定激波形状求解轴对称流场,并研究其适用性。首先比较左右特征线交织和左特征线流线交织推进这两种推进方式,发现使用逆向左特征线和流线交织的方法求未知解点,操作比较简单,而且稳定性更好。其次将激波形状分为凹曲线和凸曲线,分别分析逆特征线法的适用性:对于凹激波形状,结合斜激波关系式证明,使用逆特征线法一般是可以求解波后流场的;对于凸激波形状,当激波角沿轴向减小过多时会发生左行特征线交叉,导致逆特征线法不适用,并进而提出在不适用的凸激波形状段,可以使用一段膨胀流代替。最后结合计算流体力学技术验证本文的方法和结论,为推进逆特征线法在乘波体和进气道设计中的应用提供理论支撑。

     

  • 图 1  逆向左特征线和右特征线交织的网格单元[5,20]

    Figure 1.  Mesh element intersected by left-running and right-running characteristic lines[5,20]

    图 2  逆向左特征线和流线交织的网格单元[19, 21]

    Figure 2.  Mesh element intersected by left-running characteristic line and stream line[19, 21]

    图 3  逆特征线法计算网格

    Figure 3.  Computational mesh using iMoC

    图 4  激波依赖区域的补足

    Figure 4.  Complement of shock-dependent area

    图 5  不连续的激波角

    Figure 5.  Discontinuous shock wave angle

    图 6  局部的膨胀流场区域

    Figure 6.  Local area of expansion flow

    图 7  膨胀流的求解

    Figure 7.  Solution of expansion flow

    图 8  凹激波流场的网格和压力分布

    Figure 8.  Mesh and pressure distribution of flows with concave shock wave

    图 9  iMoC和CFD计算的凹激波流场马赫数对比

    Figure 9.  Mach number comparison of flows with concave shock wave simulated using iMoC and CFD

    图 10  凹激波流场沿物面的压力对比

    Figure 10.  Comparison of pressure distribution along wall boundary in flows with concave shock

    图 11  凸激波流场

    Figure 11.  Flow with convex shock wave

    图 12  凸激波流场的激波形状局部对比

    Figure 12.  Part comparison of shock wave shape in flow with convex shock

    图 13  iMoC和CFD计算的凸激波流场马赫数对比

    Figure 13.  Mach number comparison of flows with convex shock wave simulated using iMoC and CFD

    图 14  凸激波流场沿物面的压力对比

    Figure 14.  Comparison of pressure distribution along wall boundary in flows with convex shock wave

    表  1  凹激波曲线的B样条控制点

    Table  1.   Control points of B-spline for concave shock curve

    坐标控制点
    P0P1P2P3P4P5
    x00.20.40.60.81.0
    r00.060.120.200.300.40
    下载: 导出CSV

    表  2  凸激波曲线的B样条控制点

    Table  2.   Control points of B-spline for convex shock curve

    坐标控制点
    P0P1P2P3P4P5
    x0.00.20.40.60.81.0
    r0.00.080.100.200.320.40
    下载: 导出CSV
  • [1] CUI Kai,ZHAO Dongxu,YANG Guowei. Waverider configurations derived from general conical flowfields[J]. Acta Mechanica Sinica,2007,23(3): 247-255. doi: 10.1007/s10409-007-0069-2
    [2] MANGIN B,BENAY R,CHANETZ B,et al. Optimization of viscous waveriders derived from axisymmetric power-law blunt body flows[J]. Journal of Spacecraft and Rockets,2006,43(5): 990-998. doi: 10.2514/1.20079
    [3] DING Feng,LIU Jun,SHEN Chibing,et al. Novel approach for design of a waverider vehicle generated from axisymmetric supersonic flows past a pointed von Karman ogive[J]. Aerospace Science and Technology,2015,42: 297-308. doi: 10.1016/j.ast.2015.01.025
    [4] LIU Wen,ZHANG Chenan,WANG Xiaopeng,et al. Parametric study on lateral–directional stability of hypersonic waverider[J]. AIAA Journal,2021: 1-18.
    [5] SOBIECZKY H,ZORES B,WANG Z,et al. High speed flow design using osculating axisymmetric flows[R]. Xi’an,China: 3rd Pacific International Conference on Aerospace Science and Technology 1997.
    [6] RODI P. The osculating flowfield method of waverider geometry generation[R]. AIAA2005-511,2005.
    [7] RODI P,GENOVESI D. Engineering-based performance comparisons between osculating cone and osculating flowfield waveriders[R]. AIAA2007-4344,2007.
    [8] WANG Xudong,WANG Jiangfeng,LYU Zhenjun. A new integration method based on the coupling of mutistage osculating cones waverider and Busemann inlet for hypersonic airbreathing vehicles[J]. Acta Astronautica,2016,126: 424-438. doi: 10.1016/j.actaastro.2016.06.022
    [9] LIU Zhen,LIU Jun,DING Feng,et al. Influence of surface pressure distribution of basic flowfield on osculating axisymmetric waverider[J]. AIAA Journal,2019,57(10): 4560-4568. doi: 10.2514/1.J058140
    [10] MIZENER A R,LU F K,RODI P E. Performance sensitivities of rotating detonation engines installed onto waverider forebodies[J]. Journal of Propulsion and Power,2019,35(2): 289-302. doi: 10.2514/1.B37033
    [11] ZHOU Hang,JIN Zhiguang. A novel approach for inverse design of three-dimensional shock waves under non-uniform flows[J]. Acta Astronautica,2020,176: 324-331. doi: 10.1016/j.actaastro.2020.06.050
    [12] 南向军,张堃元,金志光,等. 压升规律可控的高超声速内收缩进气道设计[J]. 航空动力学报,2011,26(3): 518-523. NAN Xiangjun,ZHANG Kunyuan,JIN Zhiguang,et al. Investigation on hypersonic inward turning inlets with controlled pressure gradient[J]. Journal of Aerospace Power,2011,26(3): 518-523. (in Chinese

    NAN Xiangjun, ZHANG Kunyuan, JIN Zhiguang, et al. Investigation on hypersonic inward turning inlets with controlled pressure gradient[J]. Journal of Aerospace Power, 2011, 26(3): 518-523. (in Chinese)
    [13] 李永洲,张堃元,南向军. 基于马赫数分布规律可控概念的高超声速内收缩进气道设计[J]. 航空动力学报,2012,27(11): 2484-2491. LI Yongzhou,ZHANG Kunyuan,NAN Xiangjun. Design of hypersonic inward turning inlets base on concept of controllable Mach number distribution[J]. Journal of Aerospace Power,2012,27(11): 2484-2491. (in Chinese

    LI Yongzhou, ZHANG Kunyuan, NAN Xiangjun. Design of hypersonic inward turning inlets base on concept of controllable Mach number distribution[J]. Journal of Aerospace Power, 2012, 27(11): 2484-2491. (in Chinese)
    [14] YOU Yancheng,LIANG Dewang. Design concept of three-dimensional section controllable internal waverider hypersonic inlet[J]. Science in China Series E: Technological Sciences,2009,52(7): 2017-2028. doi: 10.1007/s11431-009-0125-1
    [15] 贺旭照,周正,倪鸿礼. 密切内锥乘波前体进气道一体化设计和性能分析[J]. 推进技术,2012,33(4): 510-515. HE Xuzhao,ZHOU Zheng,NI Hongli. Integrated design methods and performance analyses of osculating inward turning cone waverider forebody inlet(OICWI)[J]. Journal of Propulsion Technology,2012,33(4): 510-515. (in Chinese

    HE Xuzhao, ZHOU Zheng, NI Hongli. Integrated design methods and performance analyses of osculating inward turning cone waverider forebody inlet(OICWI)[J]. Journal of Propulsion Technology, 2012, 33(4): 510-515. (in Chinese)
    [16] HUANG Guoping,ZUO Fengyuan,QIAO Wenyou. Design method of internal waverider inlet under non-uniform upstream for inlet/forebody integration[J]. Aerospace Science and Technology,2018,74: 160-172. doi: 10.1016/j.ast.2018.01.012
    [17] 曲俐鹏,曾学军,余安远,等. 一体化乘波进气道改进设计和流动特征分析[J]. 航空动力学报,2018,33(4): 865-873. QU Lipeng,ZENG Xuejun,YU Anyuan,et al. Improving design and flow characteristics analysis of an integrated wave-rider inlet[J]. Journal of Aerospace Power,2018,33(4): 865-873. (in Chinese

    QU Lipeng, ZENG Xuejun, YU Anyuan, et al. Improving design and flow characteristics analysis of an integrated wave-rider inlet[J]. Journal of Aerospace Power, 2018, 33(4): 865-873. (in Chinese)
    [18] 刘亚洲,李平,陈宏玉,等. 不同延伸段压力分布的双钟形喷管设计[J]. 航空动力学报,2022,37(2): 424-432. LIU Yazhou,LI Ping,CHEN Hongyu,et al. Design of dual-bell nozzles with different extension pressure distributions[J]. Journal of Aerospace Power,2022,37(2): 424-432. (in Chinese

    LIU Yazhou, LI Ping, CHEN Hongyu, et al. Design of dual-bell nozzles with different extension pressure distributions[J]. Journal of Aerospace Power, 2022, 37(2): 424-432. (in Chinese)
    [19] 乔文友,黄国平,夏晨,等. 发展用于高速飞行器前体/进气道匹配设计的逆特征线法[J]. 航空动力学报,2014,29(6): 1444-1452. QIAO Wenyou,HUANG Guoping,XIA Chen,et al. Development of inverse characteristic method for matching design of high-speed aircraft forebody/inlet[J]. Journal of Aerospace Power,2014,29(6): 1444-1452. (in Chinese

    QIAO Wenyou, HUANG Guoping, XIA Chen, et al. Development of inverse characteristic method for matching design of high-speed aircraft forebody/inlet[J]. Journal of Aerospace Power, 2014, 29(6): 1444-1452. (in Chinese)
    [20] YU Kaikai,XU Jinglei,GONG Hao,et al. Inverse design methodology of cone-derived waverider based on pre-defined shock wave under strong geometric constraints[J]. Acta Astronautica,2019,159: 527-539. doi: 10.1016/j.actaastro.2019.02.011
    [21] 郭善广,王振国,赵玉新,等. 高超声速二元进气道前体曲线激波逆向设计[J]. 航空学报,2014,35(5): 1246-1256. GUO Shanguang,WANG Zhenguo,ZHAO Yuxin,et al. Inverse design of the fore-body curved shock wave of the hypersonic planar inlet[J]. Acta Aeronautica et Astronautica Sinica,2014,35(5): 1246-1256. (in Chinese

    GUO Shanguang, WANG Zhenguo, ZHAO Yuxin, et al. Inverse design of the fore-body curved shock wave of the hypersonic planar inlet[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1246-1256. (in Chinese)
    [22] JONES K,DOUGHERTY F,SEEBASS A,et al. Waverider design for generalized shock geometries[R]. AIAA1993-774,1993.
    [23] LI H,BEN-DOR G. Oblique-shock/expansion-fan interaction - Analytical solution[J]. AIAA Journal,1996,34(2): 418-421. doi: 10.2514/3.13081
    [24] 周建伟. 轴对称体外部流场的有旋特征线法[J]. 上海航天,1999,16(6): 24-29,41. ZHOU Jianwei. The theory of the viscid characteristics for the flow field of the axisymmetric body[J]. Aerospace Shanghai,1999,16(6): 24-29,41. (in Chinese

    ZHOU Jianwei. The theory of the viscid characteristics for the flow field of the axisymmetric body[J]. Aerospace Shanghai, 1999, 16(6): 24-29, 41. (in Chinese)
    [25] LES P,WAYNE T. The NURBS book (second edition) [M]. Heidelberg,Germany: Springer-Verlag,1997.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  20
  • HTML浏览量:  14
  • PDF量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-02
  • 网络出版日期:  2024-03-04

目录

    /

    返回文章
    返回