Development and application of finite element methods in research field of thermal barrier coatings
-
摘要:
分别从热生成氧化物(TGO)生长行为及应力应变、热障涂层(TBC)整体热力学性能、热障涂层结构优化及寿命预测三大方面进行概述,分析近些年来有限元方法在该研究领域中的发展与应用,总结目前研究中存在的问题和局限性。目前研究的发展方向主要是将失效理论、多物理场耦合以及Python子程序等与复杂的物理模型相结合,以获取更为准确的有限元分析结果。然而受限于真实TGO形貌毫无规律、高温条件下材料物性参数不充足、陶瓷层内微观孔隙随机分布等诸多问题,所得计算结果相比实际仍存在一定差距。今后可以从物理模型精细度、层间边界条件、动态生长模拟等方面进行更深入的研究。
Abstract:Three major aspects, including thermally grown oxides (TGO) growth behavior and stress-strain, overall thermomechanical properties of thermal barrier coatings (TBC), structural optimization and life prediction of TBC, were reviewed. The development and application of finite element method in these researches in recent years were analyzed, then the problems and limitations in current researches were summarized. At present, the research directions mainly focus on the combination of failure theory, multi-physics coupling and Python subroutines with complex physical models to obtain more accurate finite element analysis results. However, due to many problems such as irregular morphology of TGO, insufficient physical parameters of materials under high temperature conditions, and random distribution of microscopic pores in ceramic layers, there is still a gap between the calculated and actual results. In the future, more in-depth research can be carried out from the aspects of physical model fineness, interlayer boundary conditions and dynamic growth simulation, etc.
-
-
[1] PADTURE N P,GELL M,JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science,2002,296(5566): 280-284. doi: 10.1126/science.1068609 [2] 王博,刘洋,王福德,等. 航空发动机及燃气轮机涡轮叶片热障涂层技术研究及应用[J]. 航空发动机,2021,47(增刊1): 25-31. WANG Bo,LIU Yang,WANG Fude,et al. Research and application of thermal barrier coatings for aeroengine and gas turbine blades[J]. Aeroengine,2021,47(Suppl. 1): 25-31. (in ChineseWANG Bo, LIU Yang, WANG Fude, et al. Research and application of thermal barrier coatings for aeroengine and gas turbine blades[J]. Aeroengine, 2021, 47(Suppl. 1): 25-31. (in Chinese) [3] 温泉,李亞忠,馬薏文,等. 热障涂层技术发展[J]. 航空动力,2021(5): 60-64. WEN Quan,LI Yazhong,MA Yiwen,et al. Development of thermal barrier coating technology[J]. Aerospace Power,2021(5): 60-64. (in ChineseWEN Quan, LI Yazhong, MA Yiwen, et al. Development of thermal barrier coating technology[J]. Aerospace Power, 2021(5): 60-64. (in Chinese) [4] 郭洪波,魏亮亮,张宝鹏,等. 等离子物理气相沉积热障涂层研究[J]. 航空制造技术,2015,58(22): 26-31. GUO Hongbo,WEI Liangliang,ZHANG Baopeng,et al. Study on plasma spray-physical vapor deposition thermal barrier coatings[J]. Aeronautical Manufacturing Technology,2015,58(22): 26-31. (in ChineseGUO Hongbo, WEI Liangliang, ZHANG Baopeng, et al. Study on plasma spray-physical vapor deposition thermal barrier coatings[J]. Aeronautical Manufacturing Technology, 2015, 58(22): 26-31. (in Chinese) [5] CLARKE D R,OECHSNER M,PADTURE N P. Thermal-barrier coatings for more efficient gas-turbine engines[J]. MRS Bulletin,2012,37(10): 891-898. doi: 10.1557/mrs.2012.232 [6] 周洪,李飞,何博,等. 热障涂层材料研究进展[J]. 材料导报,2006,20(10): 40-43. ZHOU Hong,LI Fei,HE Bo,et al. Research progresses in materials for thermal barrier coatings[J]. Materials Review,2006,20(10): 40-43. (in Chinese doi: 10.3321/j.issn:1005-023X.2006.10.011ZHOU Hong, LI Fei, HE Bo, et al. Research progresses in materials for thermal barrier coatings[J]. Materials Review, 2006, 20(10): 40-43. (in Chinese) doi: 10.3321/j.issn:1005-023X.2006.10.011 [7] 牟仁德. 热障涂层隔热性能研究[D]. 北京: 北京航空材料研究院,2007. MOU Rende. Study on thermal insulation performance of thermal barrier coating[D]. Beijing: Beijing Institute of Aerospace Materials,2007. (in ChineseMOU Rende. Study on thermal insulation performance of thermal barrier coating[D]. Beijing: Beijing Institute of Aerospace Materials, 2007. (in Chinese) [8] 彭春玉. 氧化钇稳定氧化锆涂层的研究现状[J]. 广州化工,2019,47(13): 44-46. PENG Chunyu. Research progress on failure mechanism of thermal barrier coating[J]. Guangzhou Chemical Industry,2019,47(13): 44-46. (in Chinese doi: 10.3969/j.issn.1001-9677.2019.13.020PENG Chunyu. Research progress on failure mechanism of thermal barrier coating[J]. Guangzhou Chemical Industry, 2019, 47(13): 44-46. (in Chinese) doi: 10.3969/j.issn.1001-9677.2019.13.020 [9] 李政. 大气等离子喷涂纳米5wt. %YSZ和8wt. %YSZ涂层的组织与性能研究[D]. 辽宁 大连: 大连海事大学,2020. LI Zheng. Microstructure and Properties of Atmospheric Plasma Sprayed 5wt. %YSZ and 8wt. %YSZ Nanostructured Coatings[D]. Dalian Liaoning: Dalian Maritime University,2020. (in ChineseLI Zheng. Microstructure and Properties of Atmospheric Plasma Sprayed 5wt. %YSZ and 8wt. %YSZ Nanostructured Coatings[D]. Dalian Liaoning: Dalian Maritime University, 2020. (in Chinese) [10] RANJBAR-FAR M,ABSI J,MARIAUX G,et al. Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method[J]. Materials & Design,2010,31(2): 772-781. [11] ERIKSSON R,SJOSTROM S,BRODIN H,et al. TBC bond coat-top coat interface roughness: influence on fatigue life and modelling aspects[J]. Surface and Coatings Technology,2013,236: 230-238. doi: 10.1016/j.surfcoat.2013.09.051 [12] AHRENS M,VABEN R,STOVER D. Stress distributions in plasma-sprayed thermal barrier coatings as a function of interface roughness and oxide scale thickness[J]. Surface and Coatings Technology,2002,161(1): 26-35. doi: 10.1016/S0257-8972(02)00359-6 [13] BASU S N,YE G,KHARE R,et al. Dependence of splat remelt and stress evolution on surface roughness length scales in plasma sprayed thermal barrier coatings[J]. International Journal of Refractory Metals and Hard Materials,2009,27(2): 479-484. doi: 10.1016/j.ijrmhm.2008.11.012 [14] GUPTA M,SKOGSBERG K,NYLEN P. Influence of topcoat-bondcoat interface roughness on stresses and lifetime in thermal barrier coatings[J]. Journal of Thermal Spray Technology,2014,23(1): 170-181. [15] MORIDI A,AZADI M,FARRAHI G H. Thermo-mechanical stress analysis of thermal barrier coating system considering thickness and roughness effects[J]. Surface and Coatings Technology,2014,243: 91-99. doi: 10.1016/j.surfcoat.2012.02.019 [16] OLSSON M,GIANNAKOPOULOS A E,SURESH S. Elastoplastic analysis of thermal cycling: ceramic particles in a metallic matrix[J]. Journal of the Mechanics and Physics of Solids,1995,43(10): 1639-1671. doi: 10.1016/0022-5096(95)00046-L [17] EVANS A G,MUMM D R,HUTCHINSON J W,et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science,2001,46(5): 505-553. doi: 10.1016/S0079-6425(00)00020-7 [18] HE M Y,EVANS A G,HUTCHINSON J W. The ratcheting of compressed thermally grown thin films on ductile substrates[J]. Acta Materialia,2000,48(10): 2593-2601. doi: 10.1016/S1359-6454(00)00053-7 [19] AMBRICO J M,BEGLEY M R,JORDAN E H. Stress and shape evolution of irregularities in oxide films on elastic-plastic substrates due to thermal cycling and film growth[J]. Acta Materialia,2001,49(9): 1577-1588. doi: 10.1016/S1359-6454(01)00059-3 [20] HE M Y,HUTCHINSON J W,EVANS A G. Large deformation simulations of cyclic displacement instabilities in thermal barrier systems[J]. Acta Materialia,2002,50(5): 1063-1073. doi: 10.1016/S1359-6454(01)00406-2 [21] KARLSSON A M,EVANS A G. A numerical model for the cyclic instability of thermally grown oxides in thermal barrier systems[J]. Acta Materialia,2001,49(10): 1793-1804. doi: 10.1016/S1359-6454(01)00073-8 [22] KARLSSON A M,LEVI C G,EVANS A G. A model study of displacement instabilities during cyclic oxidation[J]. Acta Materialia,2002,50(6): 1263-1273. doi: 10.1016/S1359-6454(01)00403-7 [23] KARLSSON A. A fundamental model of cyclic instabilities in thermal barrier systems[J]. Journal of the Mechanics and Physics of Solids,2002,50(8): 1565-1589. doi: 10.1016/S0022-5096(02)00003-0 [24] KARLSSON A,HUTCHINSON J,EVANS A. The displacement of the thermally grown oxide in thermal barrier systems upon temperature cycling[J]. Materials Science & Engineering A,2003,351(1/2): 244-257. [25] BUSSO E P,QIAN Z Q. A mechanistic study of microcracking in transversely isotropic ceramic-metal systems[J]. Acta Materialia,2006,54(2): 325-338. doi: 10.1016/j.actamat.2005.09.003 [26] BUSSO E P,QIAN Z Q,TAYLOR M P,et al. The influence of bondcoat and topcoat mechanical properties on stress development in thermal barrier coating systems[J]. Acta Materialia,2009,57(8): 2349-2361. doi: 10.1016/j.actamat.2009.01.017 [27] BUSSO E P,EVANS H E,QIAN Z Q,et al. Effects of breakaway oxidation on local stresses in thermal barrier coatings[J]. Acta Materialia,2010,58(4): 1242-1251. doi: 10.1016/j.actamat.2009.10.028 [28] DING Jun,LI Fengxun,KANG K J. Numerical simulation of displacement instabilities of surface grooves on an alumina forming alloy during thermal cycling oxidation[J]. Journal of Mechanical Science and Technology,2009,23(8): 2308-2319. doi: 10.1007/s12206-009-0430-4 [29] LEE S S,SUN S K,KANG K J. In-situ measurement of the thickness of aluminum oxide scales at high temperature[J]. Oxidation of Metals,2005,63(1): 73-85. [30] KANG K J,MERCER C. Creep properties of a thermally grown alumina[J]. Materials Science and Engineering: A,2008,478(1/2): 154-162. [31] SHARMA S,KO G,KANG K. High temperature creep and tensile properties of alumina formed on Fecralloy foils doped with yttrium[J]. Journal of the European Ceramic Society,2008,29(3): 355-362. [32] MERCER C,HOVIS D,HEUER A H,et al. Influence of thermal cycle on surface evolution and oxide formation in a superalloy system with a NiCoCrAlY bond coat[J]. Surface and Coatings Technology,2008,202(20): 4915-4921. doi: 10.1016/j.surfcoat.2008.04.070 [33] 李国浩,巴德纯,倪岩松,等. 粘结层粗糙度对YSZ涂层热震性能的影响[J]. 表面技术,2021,50(7): 310-317,336. LI Guohao,BA Dechun,NI Yansong,et al. Effect of bonding layer roughness on thermal shock performance of YSZ coating[J]. Surface Technology,2021,50(7): 310-317,336. (in ChineseLI Guohao, BA Dechun, NI Yansong, et al. Effect of bonding layer roughness on thermal shock performance of YSZ coating[J]. Surface Technology, 2021, 50(7): 310-317, 336. (in Chinese) [34] ROUSSEAU F,QUINSAC A,MORVAN D,et al. A new injection system for spraying liquid nitrates in a low power plasma reactor: application to local repair of damaged thermal barrier coating[J]. Surface and Coatings Technology,2019,357: 195-203. doi: 10.1016/j.surfcoat.2018.09.069 [35] 付倩倩,通雁鹏,杨玉璋. 航空发动机涡轮叶片热障涂层失效分析研究[J]. 失效分析与预防,2017,12(6): 376-380. FU Qianqian,TONG Yanpeng,YANG Yuzhang. Failure analysis of thermal barrier coatings deposited on turbine blades[J]. Failure Analysis and Prevention,2017,12(6): 376-380. (in ChineseFU Qianqian, TONG Yanpeng, YANG Yuzhang. Failure analysis of thermal barrier coatings deposited on turbine blades[J]. Failure Analysis and Prevention, 2017, 12(6): 376-380. (in Chinese) [36] 郝勇,齐红宇,马立强. 高温氧化对EB-PVD热障涂层内部应力场分布影响的数值模拟[J]. 航空动力学报,2014,29(7): 1520-1526. HAO Yong,QI Hongyu,MA Liqiang. Numerical simulation of effect of high temperature oxidation on stress field distribution of EB-PVD thermal barrier coating[J]. Journal of Aerospace Power,2014,29(7): 1520-1526. (in ChineseHAO Yong, QI Hongyu, MA Liqiang. Numerical simulation of effect of high temperature oxidation on stress field distribution of EB-PVD thermal barrier coating[J]. Journal of Aerospace Power, 2014, 29(7): 1520-1526. (in Chinese) [37] YU Q,ZHOU Huashan,WANG Lu. Influences of interface morphology and thermally grown oxide thickness on residual stress distribution in thermal barrier coating system[J]. Ceramics International,2016,42: 8338-8350. doi: 10.1016/j.ceramint.2016.02.049 [38] 李佐君,梁伟,钟舜聪,等. TGO及初始裂纹对热障涂层裂纹形核与扩展影响的有限元分析[J]. 失效分析与预防,2021,16(5): 300-308,313. LI Zuojun,LIANG Wei,ZHONG Shuncong,et al. Influence of TGO and initial crack on crack nucleation and propagation in thermal barrier coatings based on finite element analysis[J]. Failure Analysis and Prevention,2021,16(5): 300-308,313. (in ChineseLI Zuojun, LIANG Wei, ZHONG Shuncong, et al. Influence of TGO and initial crack on crack nucleation and propagation in thermal barrier coatings based on finite element analysis[J]. Failure Analysis and Prevention, 2021, 16(5): 300-308, 313. (in Chinese) [39] JIANG Jishen,JIANG Lingxin,CAI Zhenwei,et al. Numerical stress analysis of the TBC-film cooling system under operating conditions considering the effects of thermal gradient and TGO growth[J]. Surface and Coatings Technology,2019,357: 433-444. doi: 10.1016/j.surfcoat.2018.10.020 [40] 郭蕙敏,李博,张立群,等. 真实TGO界面形貌对热障涂层界面应力的影响[J]. 金属热处理,2021,46(11): 232-235. GUO Huimin,LI Bo,ZHANG Liqun,et al. Effect of real TGO interface topography on interface stress of thermal barrier coatings[J]. Heat Treatment of Metals,2021,46(11): 232-235. (in ChineseGUO Huimin, LI Bo, ZHANG Liqun, et al. Effect of real TGO interface topography on interface stress of thermal barrier coatings[J]. Heat Treatment of Metals, 2021, 46(11): 232-235. (in Chinese) [41] 钟建兰,敖波,古玉祺. 基于真实TGO三维结构的热障涂层热应力分析[J]. 稀有金属材料与工程,2018,47(7): 2100-2106. ZHONG Jianlan,AO Bo,GU Yuqi. Thermal stress analysis on thermal barrier coatings based on real three-dimensional structure of thermally grown oxide[J]. Rare Metal Materials and Engineering,2018,47(7): 2100-2106. (in ChineseZHONG Jianlan, AO Bo, GU Yuqi. Thermal stress analysis on thermal barrier coatings based on real three-dimensional structure of thermally grown oxide[J]. Rare Metal Materials and Engineering, 2018, 47(7): 2100-2106. (in Chinese) [42] KYAW S,JONES A,JEPSON M A E,et al. Effects of three-dimensional coating interfaces on thermo-mechanical stresses within plasma spray thermal barrier coatings[J]. Materials & Design,2017,125: 189-204. [43] SCRIVANI A,RIZZI G,BERNDT C C. Enhanced thick thermal barrier coatings that exhibit varying porosity[J]. Materials Science and Engineering: A,2008,476(1/2): 1-7. [44] YAN Jinrong,WANG Xin,CHEN Kuiying,et al. Sintering modeling of thermal barrier coatings at elevated temperatures: a review of recent advances[J]. Coatings,2021,11(10): 1214. doi: 10.3390/coatings11101214 [45] WANG L,WANG Y,SUN X G,et al. Influence of pores on the thermal insulation behavior of thermal barrier coatings prepared by atmospheric plasma spray[J]. Materials & Design,2011,32(1): 36-47. [46] GUO Xingye,HU Bin,WEI Changdong,et al. Image-based multi-scale simulation and experimental validation of thermal conductivity of lanthanum zirconate[J]. International Journal of Heat and Mass Transfer,2016,100: 34-38. doi: 10.1016/j.ijheatmasstransfer.2016.04.067 [47] YANG Ming,ZHU Yongping,WANG Xueying,et al. Effect of five kinds of pores shape on thermal stress properties of thermal barrier coatings by finite element method[J]. Ceramics International,2017,43(13): 9664-9678. doi: 10.1016/j.ceramint.2017.04.139 [48] CUI Shiyu,MIAO Qiang,DOMBLESKY J P,et al. Modeling of the temperature field in a porous thermal barrier coating[J]. Ceramics International,2019,45(10): 12635-12642. doi: 10.1016/j.ceramint.2019.02.166 [49] SUN Fan,FAN Xueling,ZHANG Tao,et al. Numerical analysis of the influence of pore microstructure on thermal conductivity and Young’s modulus of thermal barrier coating[J]. Ceramics International,2020,46: 24326-24332. doi: 10.1016/j.ceramint.2020.06.214 [50] 刘阳,蔡洪能,魏志远,等. 等离子喷涂热障涂层内孔隙对其隔热性能的影响[J]. 材料保护,2021,54(11): 1-9. LIU Yang,CAI Hongneng,WEI Zhiyuan,et al. Influence of the porosity on the thermal insulation performance of plasma sprayed thermal barrier coating[J]. Materials Protection,2021,54(11): 1-9. (in Chinese doi: 10.3969/j.issn.1001-1560.2021.11.clbh202111001LIU Yang, CAI Hongneng, WEI Zhiyuan, et al. Influence of the porosity on the thermal insulation performance of plasma sprayed thermal barrier coating[J]. Materials Protection, 2021, 54(11): 1-9. (in Chinese) doi: 10.3969/j.issn.1001-1560.2021.11.clbh202111001 [51] 廖红星,宋鹏,周会会,等. 陶瓷层与界面孔隙率对热障涂层寿命及其失效机制的影响[J]. 复合材料学报,2016,33(8): 1785-1793. LIAO Hongxing,SONG Peng,ZHOU Huihui,et al. Effect of porosity of ceramic-coats and interface on lifetime and failure mechanism of thermal barrier coating[J]. Acta Materiae Compositae Sinica,2016,33(8): 1785-1793. (in ChineseLIAO Hongxing, SONG Peng, ZHOU Huihui, et al. Effect of porosity of ceramic-coats and interface on lifetime and failure mechanism of thermal barrier coating[J]. Acta Materiae Compositae Sinica, 2016, 33(8): 1785-1793. (in Chinese) [52] REZVANI RAD M,FARRAHI G H,AZADI M,et al. Stress analysis of thermal barrier coating system subjected to out-of-phase thermo-mechanical loadings considering roughness and porosity effect[J]. Surface and Coatings Technology,2015,262: 77-86. doi: 10.1016/j.surfcoat.2014.12.016 [53] 史丽萍,赫晓东,李垚. EBPVD制备复合多层结构材料中残余应力的数值模拟[C]//中国硅酸盐学会2003年学术年会论文摘要集. 北京: 中国硅酸盐学会,2003: 290. [54] 赵运才,张佳茹,何文. 基于ANSYS生死单元法的多层等离子喷涂体系仿真[J]. 金属热处理,2017,42(12): 225-231. ZHAO Yuncai,ZHANG Jiaru,HE Wen. Simulation of multi-layer plasma spraying system based on ANSYS element death and birth method[J]. Heat Treatment of Metals,2017,42(12): 225-231. (in ChineseZHAO Yuncai, ZHANG Jiaru, HE Wen. Simulation of multi-layer plasma spraying system based on ANSYS element death and birth method[J]. Heat Treatment of Metals, 2017, 42(12): 225-231. (in Chinese) [55] WANG L,ZHONG X H,ZHAO Y X,et al. Effect of interface on the thermal conductivity of thermal barrier coatings: a numerical simulation study[J]. International Journal of Heat and Mass Transfer,2014,79: 954-967. doi: 10.1016/j.ijheatmasstransfer.2014.08.088 [56] 段力,高均超,汪瑞军,等. 航空发动机叶片表面热障涂层温度分布的仿真分析[J]. 上海交通大学学报,2017,51(8): 915-920. DUAN Li,GAO Junchao,WANG Ruijun,et al. Simulation analysis of temperature distribution of turbine blades by thermal buffer coating for aero engine[J]. Journal of Shanghai Jiao Tong University,2017,51(8): 915-920. (in ChineseDUAN Li, GAO Junchao, WANG Ruijun, et al. Simulation analysis of temperature distribution of turbine blades by thermal buffer coating for aero engine[J]. Journal of Shanghai Jiao Tong University, 2017, 51(8): 915-920. (in Chinese) [57] TENANGO O,JARON E L,GARCIA J C,et al. Effect of thermal barrier coating on the thermal stress of gas microturbine blades and nozzles[J]. Journal of Mechanical Engineering,2020,66(10): 581-590. doi: 10.5545/sv-jme.2020.6883 [58] BUNKER R S. A review of shaped hole turbine film-cooling technology[J]. Journal of Heat Transfer,2005,127(4): 441-453. doi: 10.1115/1.1860562 [59] DAVIDSON F T,KISTENMACHER D A,BOGARD D G. Film cooling with a thermal barrier coating: round holes,craters,and trenches[J]. Journal of Turbomachinery,2014,136(4): 041007. doi: 10.1115/1.4024883 [60] LIU Z Y,ZHU W,YANG L,et al. et al. Numerical prediction of thermal insulation performance and stress distribution of thermal barrier coatings coated on a turbine vane[J]. International Journal of Thermal Sciences,2020,158: 106552. doi: 10.1016/j.ijthermalsci.2020.106552 [61] 刘建华,刘永葆,刘莉,等. 气膜冷却涡轮导叶热障涂层热应力的数值模拟[J]. 中国表面工程,2018,31(3): 126-136. LIU Jianhua,LIU Yongbao,LIU Li,et al. Numerical modeling of thermal stress of thermal barrier coatings on a turbine vane with film cooling structure[J]. China Surface Engineering,2018,31(3): 126-136. (in Chinese doi: 10.11933/j.issn.1007-9289.20171116002LIU Jianhua, LIU Yongbao, LIU Li, et al. Numerical modeling of thermal stress of thermal barrier coatings on a turbine vane with film cooling structure[J]. China Surface Engineering, 2018, 31(3): 126-136. (in Chinese) doi: 10.11933/j.issn.1007-9289.20171116002 [62] 刘志远,肖杰,杨丽,等. 涡轮叶片热障涂层隔热性能和应力数值模拟[J]. 湘潭大学学报(自然科学版),2020,42(3): 107-115. LIU Zhiyuan,XIAO Jie,YANG Li,et al. Numerical simulation of thermal insulation performance and stress of thermal barrier coatings on turbine blades[J]. Journal of Xiangtan University (Natural Science Edition),2020,42(3): 107-115. (in ChineseLIU Zhiyuan, XIAO Jie, YANG Li, et al. Numerical simulation of thermal insulation performance and stress of thermal barrier coatings on turbine blades[J]. Journal of Xiangtan University (Natural Science Edition), 2020, 42(3): 107-115. (in Chinese) [63] VASSEN,R,TRAEGER F,STOVER D. New thermal barrier coatings based on pyrochlore/YSZ double-layer systems[J]. International Journal of Applied Ceramic Technology,2004,1(4): 351-361. doi: 10.1111/j.1744-7402.2004.tb00186.x [64] 张勇. 1200℃烧结EB-PVD YSZ涂层微结构演变的TEM表征与分析[D]. 湖南 湘潭: 湘潭大学,2015. ZHANG Yong. TEM characterization and analysis of microstructure evolution of EB-PVD YSZ coating sintered at 1200℃[D]. Xiangtan Hunan: Xiangtan University,2015. (in ChineseZHANG Yong. TEM characterization and analysis of microstructure evolution of EB-PVD YSZ coating sintered at 1200℃[D]. Xiangtan Hunan: Xiangtan University, 2015. (in Chinese) [65] ZHONG Xinghua,ZHAO Huayu,ZHOU Xiaming,et al. Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating[J]. Journal of Alloys and Compounds,2014,593: 50-55. doi: 10.1016/j.jallcom.2014.01.060 [66] CHENG Bo,YANG Guanjun,ZHANG Qiang,et al. Gradient thermal cyclic behaviour of La2Zr2O7/YSZ DCL-TBCs with equivalent thermal insulation performance[J]. Journal of the European Ceramic Society,2018,38(4): 1888-1896. doi: 10.1016/j.jeurceramsoc.2017.10.058 [67] HAN Meng,HUANG Jihua,CHEN Shuhai. Behavior and mechanism of the stress buffer effect of the inside ceramic layer to the top ceramic layer in a double-ceramic-layer thermal barrier coating[J]. Ceramics International,2014,40(2): 2901-2914. doi: 10.1016/j.ceramint.2013.10.021 [68] SONG Yan,WU Weijie,QIN Mu,et al. Effect of geometric parameter on thermal stress generation in fabrication process of double-ceramic-layers thermal barrier coating system[J]. Journal of the European Ceramic Society,2018,38(11): 3962-3973. doi: 10.1016/j.jeurceramsoc.2018.04.049 [69] DAI Hui,ZHONG Xinghua,LI Jiayan,et al. Thermal stability of double-ceramic-layer thermal barrier coatings with various coating thickness[J]. Materials Science and Engineering: A,2006,433(1/2): 1-7. [70] CHEN Qi,HU Peng,PU Jian,et al. Interfacial interaction and roughness parameters effects on the residual stresses in DCL-TBC system with different thickness distributions[J]. Ceramics International,2021,47(2): 2781-2792. doi: 10.1016/j.ceramint.2020.09.132 [71] ABBAS M,GUO Hongbo,SHAHID M R. Comparative study on effect of oxide thickness on stress distribution of traditional and nanostructured zirconia coating systems[J]. Ceramics International,2013,39(1): 475-481. doi: 10.1016/j.ceramint.2012.06.051 [72] WANG L,WANG Y,SUN X G,et al. Thermal shock behavior of 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying[J]. Ceramics International,2012,38(5): 3595-3606. doi: 10.1016/j.ceramint.2011.12.076 [73] 宋振飞,秦颖,郝胜智,等. 强流脉冲电子束热障涂层表面改性温度场数值模拟[J]. 真空科学与技术学报,2008,28(6): 522-525. SONG Zhenfei,QIN Ying,HAO Shengzhi,et al. Simulation of temperature field in surface modification of thermal barrier coating deposited by high current pulsed electron beam[J]. Chinese Journal of Vacuum Science and Technology,2008,28(6): 522-525. (in ChineseSONG Zhenfei, QIN Ying, HAO Shengzhi, et al. Simulation of temperature field in surface modification of thermal barrier coating deposited by high current pulsed electron beam[J]. Chinese Journal of Vacuum Science and Technology, 2008, 28(6): 522-525. (in Chinese) [74] 王曼莉. 电子束作用下氧化锆热障涂层传热数值模拟与实验[D]. 深圳: 深圳大学,2017. WANG Manli. Numerical simulation and experiment of heat transfer of zirconia thermal barrier coating under electron beam[D]. Shenzhen: Shenzhen University,2017. (in ChineseWANG Manli. Numerical simulation and experiment of heat transfer of zirconia thermal barrier coating under electron beam[D]. Shenzhen: Shenzhen University, 2017. (in Chinese) [75] CRUSE T A,STEWART S E,ORTIZ M. Thermal barrier coating life prediction model development[J]. Journal of Engineering for Gas Turbines and Power,1988,110(4): 610-616. doi: 10.1115/1.3240179 [76] MILLER R A. Life modeling of thermal barrier coatings for aircraft gas turbine engines[J]. Journal of Engineering for Gas Turbines and Power,1989,111(2): 301-305. doi: 10.1115/1.3240251 [77] RENUSCH D,ECHSLER H,SCHUTZE M. Progress in life time modeling of APS-TBC: Part Ⅱ critical strains,macro-cracking,and thermal fatigue[J]. Materials at High Temperatures,2004,21(2): 77-86. doi: 10.1179/mht.2004.011 [78] BECK T,HERZOG R,TRUNOVA O,et al. Damage mechanisms and lifetime behavior of plasma-sprayed thermal barrier coating systems for gas turbines: Part Ⅱ modeling[J]. Surface and Coatings Technology,2008,202(24): 5901-5908. doi: 10.1016/j.surfcoat.2008.06.132 [79] BUSSO E P,EVANS H E,WRIGHT L,et al. A software tool for lifetime prediction of thermal barrier coating systems[J]. Materials and Corrosion,2008,59(7): 556-565. doi: 10.1002/maco.200804138 [80] VASSEN R,GIESEN S,STOVER D. Lifetime of plasma-sprayed thermal barrier coatings: comparison of numerical and experimental results[J]. Journal of Thermal Spray Technology,2009,18(5): 835-845. [81] 魏洪亮,杨晓光,齐红宇. 等离子涂层涡轮导向叶片热疲劳寿命预测研究[J]. 航空动力学报,2008,23(1): 1-8. WEI Hongliang,YANG Xiaoguang,QI Hongyu. Study on thermal fatigue life prediction for plasma sprayed thermal barrier coatings on the surface of turbine vane[J]. Journal of Aerospace Power,2008,23(1): 1-8. (in ChineseWEI Hongliang, YANG Xiaoguang, QI Hongyu. Study on thermal fatigue life prediction for plasma sprayed thermal barrier coatings on the surface of turbine vane[J]. Journal of Aerospace Power, 2008, 23(1): 1-8. (in Chinese) [82] 魏洪亮,杨晓光,齐红宇,等. 等离子涂层热疲劳失效模式及失效机理研究[J]. 航空动力学报,2008,23(2): 270-275. WEI Hongliang,YANG Xiaoguang,QI Hongyu,et al. Study of failure mode and failure mechanisms on thermal fatigue of plasma sprayed thermal barrier coatings[J]. Journal of Aerospace Power,2008,23(2): 270-275. (in ChineseWEI Hongliang, YANG Xiaoguang, QI Hongyu, et al. Study of failure mode and failure mechanisms on thermal fatigue of plasma sprayed thermal barrier coatings[J]. Journal of Aerospace Power, 2008, 23(2): 270-275. (in Chinese) [83] 姚玉东,艾延廷,关鹏,等. 基于遗传算法的热障涂层寿命微观影响因素[J]. 中国表面工程,2022,35(1): 207-219. YAO Yudong,AI Yanting,GUAN Peng,et al. Microscopic factors influencing the lifetime of thermal barrier coatings based on genetic algorithms[J]. China Surface Engineering,2022,35(1): 207-219. (in Chinese doi: 10.11933/j.issn.1007-9289.20210803001YAO Yudong, AI Yanting, GUAN Peng, et al. Microscopic factors influencing the lifetime of thermal barrier coatings based on genetic algorithms[J]. China Surface Engineering, 2022, 35(1): 207-219. (in Chinese) doi: 10.11933/j.issn.1007-9289.20210803001 [84] 姚玉东,艾延廷,关鹏,等. 热障涂层热疲劳寿命预测模型研究[J]. 表面技术,2022,51(6): 267-274. YAO Yudong,AI Yanting,GUAN Peng,et al. Thermal fatigue life prediction model for thermal barrier coatings[J]. Surface Technology,2022,51(6): 267-274. (in ChineseYAO Yudong, AI Yanting, GUAN Peng, et al. Thermal fatigue life prediction model for thermal barrier coatings[J]. Surface Technology, 2022, 51(6): 267-274. (in Chinese) [85] GUAN Peng,AI Yanting,FEI Chengwei,et al. Thermal fatigue life prediction of thermal barrier coat on nozzle guide vane via master–slave model[J]. Applied Sciences,2019,9(20): 4357. doi: 10.3390/app9204357 -