留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限元方法在热障涂层研究领域中的发展与应用

刘延宽 王源生 王璐璐

刘延宽, 王源生, 王璐璐. 有限元方法在热障涂层研究领域中的发展与应用[J]. 航空动力学报, 2024, 39(10):20220762 doi: 10.13224/j.cnki.jasp.20220762
引用本文: 刘延宽, 王源生, 王璐璐. 有限元方法在热障涂层研究领域中的发展与应用[J]. 航空动力学报, 2024, 39(10):20220762 doi: 10.13224/j.cnki.jasp.20220762
LIU Yankuan, WANG Yuansheng, WANG Lulu. Development and application of finite element methods in research field of thermal barrier coatings[J]. Journal of Aerospace Power, 2024, 39(10):20220762 doi: 10.13224/j.cnki.jasp.20220762
Citation: LIU Yankuan, WANG Yuansheng, WANG Lulu. Development and application of finite element methods in research field of thermal barrier coatings[J]. Journal of Aerospace Power, 2024, 39(10):20220762 doi: 10.13224/j.cnki.jasp.20220762

有限元方法在热障涂层研究领域中的发展与应用

doi: 10.13224/j.cnki.jasp.20220762
基金项目: 天津市教委科研计划项目(2020KJ016)
详细信息
    作者简介:

    刘延宽(1988-),男,副教授,博士,主要从事热障涂层方向的研究。E-mail:yk-liu@cauc.edu.cn

  • 中图分类号: V231.1

Development and application of finite element methods in research field of thermal barrier coatings

  • 摘要:

    分别从热生成氧化物(TGO)生长行为及应力应变、热障涂层(TBC)整体热力学性能、热障涂层结构优化及寿命预测三大方面进行概述,分析近些年来有限元方法在该研究领域中的发展与应用,总结目前研究中存在的问题和局限性。目前研究的发展方向主要是将失效理论、多物理场耦合以及Python子程序等与复杂的物理模型相结合,以获取更为准确的有限元分析结果。然而受限于真实TGO形貌毫无规律、高温条件下材料物性参数不充足、陶瓷层内微观孔隙随机分布等诸多问题,所得计算结果相比实际仍存在一定差距。今后可以从物理模型精细度、层间边界条件、动态生长模拟等方面进行更深入的研究。

     

  • 图 1  TGO不规则形貌及生长模型[19]

    Figure 1.  Model of TGO irregular morphology and growth [19]

    图 2  TBC模型示意图[37]

    Figure 2.  Schematic of TBC model [37]

    图 3  冷却至25 ℃后,不同TGO厚度下界面等效塑性应变(ε)的分布 [37]

    Figure 3.  Distribution of equivalent plastic strain(ε) for different TGO thicknesses when TBC is cooled down to 25 ℃[37]

    图 4  在63次热循环后TBC热应力分布[41]

    Figure 4.  Thermal stress distribution of TBC after 63 thermal cycles [41]

    图 5  不同孔隙率下,热导率和弹性模量随孔径的变化[49]

    Figure 5.  Evolution of thermal conductivity and elastic modulus with pore size at different porosities [49]

    图 6  热流路径及温度分布[49]

    Figure 6.  Heat flow path and temperature distribution [49]

    图 7  孔隙横纵比和倾斜角对有效热导率的影响[50]

    Figure 7.  Effect of pore aspect ratio and pore tilt angle on thermal conductivity of coating [50]

    图 8  涡轮叶片温度分布 [62]

    Figure 8.  Temperature distribution of turbine blade[62]

    图 9  涡轮叶片应力分布[62]

    Figure 9.  Stress distribution of turbine blade[62]

    图 10  波长λ随陶瓷层和粘结层厚度的变化[83]

    Figure 10.  Wavelength λ variation with TC and BC thickness [83]

  • [1] PADTURE N P,GELL M,JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science,2002,296(5566): 280-284. doi: 10.1126/science.1068609
    [2] 王博,刘洋,王福德,等. 航空发动机及燃气轮机涡轮叶片热障涂层技术研究及应用[J]. 航空发动机,2021,47(增刊1): 25-31. WANG Bo,LIU Yang,WANG Fude,et al. Research and application of thermal barrier coatings for aeroengine and gas turbine blades[J]. Aeroengine,2021,47(Sup 1): 25-31. (in Chinese

    WANG Bo, LIU Yang, WANG Fude, et al. Research and application of thermal barrier coatings for aeroengine and gas turbine blades[J]. Aeroengine, 2021, 47(Sup 1): 25-31. (in Chinese)
    [3] 温泉,李亞忠,馬薏文,等. 热障涂层技术发展[J]. 航空动力,2021(5): 60-64. WEN Quan,LI Yazhong,MA Yiwen,et al. Development of thermal barrier coating technology[J]. Aerospace Power,2021(5): 60-64. (in Chinese

    WEN Quan, LI Yazhong, MA Yiwen, et al. Development of thermal barrier coating technology[J]. Aerospace Power, 2021(5): 60-64. (in Chinese)
    [4] 郭洪波,魏亮亮,张宝鹏,等. 等离子物理气相沉积热障涂层研究[J]. 航空制造技术,2015,58(22): 26-31. GUO Hongbo,WEI Liangliang,ZHANG Baopeng,et al. Study on plasma spray-physical vapor deposition thermal barrier coatings[J]. Aeronautical Manufacturing Technology,2015,58(22): 26-31. (in Chinese

    GUO Hongbo, WEI Liangliang, ZHANG Baopeng, et al. Study on plasma spray-physical vapor deposition thermal barrier coatings[J]. Aeronautical Manufacturing Technology, 2015, 58(22): 26-31. (in Chinese)
    [5] CLARKE D R,OECHSNER M,PADTURE N P. Thermal-barrier coatings for more efficient gas-turbine engines[J]. MRS Bulletin,2012,37(10): 891-898. doi: 10.1557/mrs.2012.232
    [6] 周洪,李飞,何博,等. 热障涂层材料研究进展[J]. 材料导报,2006,20(10): 40-43. ZHOU Hong,LI Fei,HE Bo,et al. Research progresses in materials for thermal barrier coatings[J]. Materials Review,2006,20(10): 40-43. (in Chinese doi: 10.3321/j.issn:1005-023X.2006.10.011

    ZHOU Hong, LI Fei, HE Bo, et al. Research progresses in materials for thermal barrier coatings[J]. Materials Review, 2006, 20(10): 40-43. (in Chinese) doi: 10.3321/j.issn:1005-023X.2006.10.011
    [7] 牟仁德. 热障涂层隔热性能研究[D]. 北京: 北京航空材料研究院,2007. MOU Rende. Study on thermal insulation performance of thermal barrier coating[D]. Beijing: Beijing Institute of Aerospace Materials,2007. (in Chinese

    MOU Rende. Study on thermal insulation performance of thermal barrier coating[D]. Beijing: Beijing Institute of Aerospace Materials, 2007. (in Chinese)
    [8] 彭春玉. 氧化钇稳定氧化锆涂层的研究现状[J]. 广州化工,2019,47(13): 44-46. PENG Chunyu. Research progress on failure mechanism of thermal barrier coating[J]. Guangzhou Chemical Industry,2019,47(13): 44-46. (in Chinese doi: 10.3969/j.issn.1001-9677.2019.13.020

    PENG Chunyu. Research progress on failure mechanism of thermal barrier coating[J]. Guangzhou Chemical Industry, 2019, 47(13): 44-46. (in Chinese) doi: 10.3969/j.issn.1001-9677.2019.13.020
    [9] 李政. 大气等离子喷涂纳米5wt. %YSZ和8wt. %YSZ涂层的组织与性能研究[D]. 大连: 大连海事大学,2020. LI Zheng. Microstructure and Properties of Atmospheric Plasma Sprayed 5wt. %YSZ and 8wt. %YSZ Nanostructured Coatings[D]. Dalian: Dalian Maritime University,2020. (in Chinese

    LI Zheng. Microstructure and Properties of Atmospheric Plasma Sprayed 5wt. %YSZ and 8wt. %YSZ Nanostructured Coatings[D]. Dalian: Dalian Maritime University, 2020. (in Chinese)
    [10] RANJBAR-FAR M,ABSI J,MARIAUX G,et al. Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method[J]. Materials & Design,2010,31(2): 772-781.
    [11] ERIKSSON R,SJOSTROM S,BRODIN H,et al. TBC bond coat–top coat interface roughness: influence on fatigue life and modelling aspects[J]. Surface and Coatings Technology,2013,236: 230-238. doi: 10.1016/j.surfcoat.2013.09.051
    [12] AHRENS M,VABEN R,STOVER D. Stress distributions in plasma-sprayed thermal barrier coatings as a function of interface roughness and oxide scale thickness[J]. Surface and Coatings Technology,2002,161(1): 26-35. doi: 10.1016/S0257-8972(02)00359-6
    [13] BASU S N,YE G,KHARE R,et al. Dependence of splat remelt and stress evolution on surface roughness length scales in plasma sprayed thermal barrier coatings[J]. International Journal of Refractory Metals and Hard Materials,2009,27(2): 479-484. doi: 10.1016/j.ijrmhm.2008.11.012
    [14] GUPTA M,SKOGSBERG K,NYLEN P. Influence of topcoat-bondcoat interface roughness on stresses and lifetime in thermal barrier coatings[J]. Journal of Thermal Spray Technology,2014,23(1): 170-181.
    [15] MORIDI A,AZADI M,FARRAHI G H. Thermo-mechanical stress analysis of thermal barrier coating system considering thickness and roughness effects[J]. Surface and Coatings Technology,2014,243: 91-99. doi: 10.1016/j.surfcoat.2012.02.019
    [16] OLSSON M,GIANNAKOPOULOS A E,SURESH S. Elastoplastic analysis of thermal cycling: ceramic particles in a metallic matrix[J]. Journal of the Mechanics and Physics of Solids,1995,43(10): 1639-1671. doi: 10.1016/0022-5096(95)00046-L
    [17] EVANS A G,MUMM D R,HUTCHINSON J W,et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science,2001,46(5): 505-553. doi: 10.1016/S0079-6425(00)00020-7
    [18] HE M Y,EVANS A G,HUTCHINSON J W. The ratcheting of compressed thermally grown thin films on ductile substrates[J]. Acta Materialia,2000,48(10): 2593-2601. doi: 10.1016/S1359-6454(00)00053-7
    [19] AMBRICO J M,BEGLEY M R,JORDAN E H. Stress and shape evolution of irregularities in oxide films on elastic–plastic substrates due to thermal cycling and film growth[J]. Acta Materialia,2001,49(9): 1577-1588. doi: 10.1016/S1359-6454(01)00059-3
    [20] HE M Y,HUTCHINSON J W,EVANS A G. Large deformation simulations of cyclic displacement instabilities in thermal barrier systems[J]. Acta Materialia,2002,50(5): 1063-1073. doi: 10.1016/S1359-6454(01)00406-2
    [21] KARLSSON A M,EVANS A G. A numerical model for the cyclic instability of thermally grown oxides in thermal barrier systems[J]. Acta Materialia,2001,49(10): 1793-1804. doi: 10.1016/S1359-6454(01)00073-8
    [22] KARLSSON A M,LEVI C G,EVANS A G. A model study of displacement instabilities during cyclic oxidation[J]. Acta Materialia,2002,50(6): 1263-1273. doi: 10.1016/S1359-6454(01)00403-7
    [23] KARLSSON A. A fundamental model of cyclic instabilities in thermal barrier systems[J]. Journal of the Mechanics and Physics of Solids,2002,50(8): 1565-1589. doi: 10.1016/S0022-5096(02)00003-0
    [24] KARLSSON A,HUTCHINSON J,EVANS A. The displacement of the thermally grown oxide in thermal barrier systems upon temperature cycling[J]. Materials Science & Engineering A,2003,351(1/2): 244-257.
    [25] BUSSO E P,QIAN Z Q. A mechanistic study of microcracking in transversely isotropic ceramic–metal systems[J]. Acta Materialia,2006,54(2): 325-338. doi: 10.1016/j.actamat.2005.09.003
    [26] BUSSO E P,QIAN Z Q,TAYLOR M P,et al. The influence of bondcoat and topcoat mechanical properties on stress development in thermal barrier coating systems[J]. Acta Materialia,2009,57(8): 2349-2361. doi: 10.1016/j.actamat.2009.01.017
    [27] BUSSO E P,EVANS H E,QIAN Z Q,et al. Effects of breakaway oxidation on local stresses in thermal barrier coatings[J]. Acta Materialia,2010,58(4): 1242-1251. doi: 10.1016/j.actamat.2009.10.028
    [28] DING Jun,LI Fengxun,KANG K J. Numerical simulation of displacement instabilities of surface grooves on an alumina forming alloy during thermal cycling oxidation[J]. Journal of Mechanical Science and Technology,2009,23(8): 2308-2319. doi: 10.1007/s12206-009-0430-4
    [29] LEE S S,SUN S K,KANG K J. In-situ measurement of the thickness of aluminum oxide scales at high temperature[J]. Oxidation of Metals,2005,63(1): 73-85.
    [30] KANG K J,MERCER C. Creep properties of a thermally grown alumina[J]. Materials Science and Engineering: A,2008,478(1/2): 154-162.
    [31] SHARMA S,KO G,KANG K. High temperature creep and tensile properties of alumina formed on Fecralloy foils doped with yttrium[J]. Journal of the European Ceramic Society,2008,29(3): 355-362.
    [32] MERCER C,HOVIS D,HEUER A H,et al. Influence of thermal cycle on surface evolution and oxide formation in a superalloy system with a NiCoCrAlY bond coat[J]. Surface and Coatings Technology,2008,202(20): 4915-4921. doi: 10.1016/j.surfcoat.2008.04.070
    [33] 李国浩,巴德纯,倪岩松,等. 粘结层粗糙度对YSZ涂层热震性能的影响[J]. 表面技术,2021,50(7): 310-317,336. LI Guohao,BA Dechun,NI Yansong,et al. Effect of bonding layer roughness on thermal shock performance of YSZ coating[J]. Surface Technology,2021,50(7): 310-317,336. (in Chinese

    LI Guohao, BA Dechun, NI Yansong, et al. Effect of bonding layer roughness on thermal shock performance of YSZ coating[J]. Surface Technology, 2021, 50(7): 310-317, 336. (in Chinese)
    [34] ROUSSEAU F,QUINSAC A,MORVAN D,et al. A new injection system for spraying liquid nitrates in a low power plasma reactor: application to local repair of damaged thermal barrier coating[J]. Surface and Coatings Technology,2019,357: 195-203. doi: 10.1016/j.surfcoat.2018.09.069
    [35] 付倩倩,通雁鹏,杨玉璋. 航空发动机涡轮叶片热障涂层失效分析研究[J]. 失效分析与预防,2017,12(6): 376-380. FU Qianqian,TONG Yanpeng,YANG Yuzhang. Failure analysis of thermal barrier coatings deposited on turbine blades[J]. Failure Analysis and Prevention,2017,12(6): 376-380. (in Chinese

    FU Qianqian, TONG Yanpeng, YANG Yuzhang. Failure analysis of thermal barrier coatings deposited on turbine blades[J]. Failure Analysis and Prevention, 2017, 12(6): 376-380. (in Chinese)
    [36] 郝勇,齐红宇,马立强. 高温氧化对EB-PVD热障涂层内部应力场分布影响的数值模拟[J]. 航空动力学报,2014,29(7): 1520-1526. HAO Yong,QI Hongyu,MA Liqiang. Numerical simulation of effect of high temperature oxidation on stress field distribution of EB-PVD thermal barrier coating[J]. Journal of Aerospace Power,2014,29(7): 1520-1526. (in Chinese

    HAO Yong, QI Hongyu, MA Liqiang. Numerical simulation of effect of high temperature oxidation on stress field distribution of EB-PVD thermal barrier coating[J]. Journal of Aerospace Power, 2014, 29(7): 1520-1526. (in Chinese)
    [37] YU Q,ZHOU Huashan,WANG Lu. Influences of interface morphology and thermally grown oxide thickness on residual stress distribution in thermal barrier coating system[J]. Ceramics International,2016,42: 8338-8350. doi: 10.1016/j.ceramint.2016.02.049
    [38] 李佐君,梁伟,钟舜聪,等. TGO及初始裂纹对热障涂层裂纹形核与扩展影响的有限元分析[J]. 失效分析与预防,2021,16(5): 300-308,313. LI Zuojun,LIANG Wei,ZHONG Shuncong,et al. Influence of TGO and initial crack on crack nucleation and propagation in thermal barrier coatings based on finite element analysis[J]. Failure Analysis and Prevention,2021,16(5): 300-308,313. (in Chinese

    LI Zuojun, LIANG Wei, ZHONG Shuncong, et al. Influence of TGO and initial crack on crack nucleation and propagation in thermal barrier coatings based on finite element analysis[J]. Failure Analysis and Prevention, 2021, 16(5): 300-308, 313. (in Chinese)
    [39] JIANG Jishen,JIANG Lingxin,CAI Zhenwei,et al. Numerical stress analysis of the TBC-film cooling system under operating conditions considering the effects of thermal gradient and TGO growth[J]. Surface and Coatings Technology,2019,357: 433-444. doi: 10.1016/j.surfcoat.2018.10.020
    [40] 郭蕙敏,李博,张立群,等. 真实TGO界面形貌对热障涂层界面应力的影响[J]. 金属热处理,2021,46(11): 232-235. GUO Huimin,LI Bo,ZHANG Liqun,et al. Effect of real TGO interface topography on interface stress of thermal barrier coatings[J]. Heat Treatment of Metals,2021,46(11): 232-235. (in Chinese

    GUO Huimin, LI Bo, ZHANG Liqun, et al. Effect of real TGO interface topography on interface stress of thermal barrier coatings[J]. Heat Treatment of Metals, 2021, 46(11): 232-235. (in Chinese)
    [41] 钟建兰,敖波,古玉祺. 基于真实TGO三维结构的热障涂层热应力分析[J]. 稀有金属材料与工程,2018,47(7): 2100-2106. ZHONG Jianlan,AO Bo,GU Yuqi. Thermal stress analysis on thermal barrier coatings based on real three-dimensional structure of thermally grown oxide[J]. Rare Metal Materials and Engineering,2018,47(7): 2100-2106. (in Chinese

    ZHONG Jianlan, AO Bo, GU Yuqi. Thermal stress analysis on thermal barrier coatings based on real three-dimensional structure of thermally grown oxide[J]. Rare Metal Materials and Engineering, 2018, 47(7): 2100-2106. (in Chinese)
    [42] KYAW S,JONES A,JEPSON M A E,et al. Effects of three-dimensional coating interfaces on thermo-mechanical stresses within plasma spray thermal barrier coatings[J]. Materials & Design,2017,125: 189-204.
    [43] SCRIVANI A,RIZZI G,BERNDT C C. Enhanced thick thermal barrier coatings that exhibit varying porosity[J]. Materials Science and Engineering: A,2008,476(1/2): 1-7.
    [44] YAN Jinrong,WANG Xin,CHEN Kuiying,et al. Sintering modeling of thermal barrier coatings at elevated temperatures: a review of recent advances[J]. Coatings,2021,11(10): 1214. doi: 10.3390/coatings11101214
    [45] WANG L,WANG Y,SUN X G,et al. Influence of pores on the thermal insulation behavior of thermal barrier coatings prepared by atmospheric plasma spray[J]. Materials & Design,2011,32(1): 36-47.
    [46] GUO Xingye,HU Bin,WEI Changdong,et al. Image-based multi-scale simulation and experimental validation of thermal conductivity of lanthanum zirconate[J]. International Journal of Heat and Mass Transfer,2016,100: 34-38. doi: 10.1016/j.ijheatmasstransfer.2016.04.067
    [47] YANG Ming,ZHU Yongping,WANG Xueying,et al. Effect of five kinds of pores shape on thermal stress properties of thermal barrier coatings by finite element method[J]. Ceramics International,2017,43(13): 9664-9678. doi: 10.1016/j.ceramint.2017.04.139
    [48] CUI Shiyu,MIAO Qiang,DOMBLESKY J P,et al. Modeling of the temperature field in a porous thermal barrier coating[J]. Ceramics International,2019,45(10): 12635-12642. doi: 10.1016/j.ceramint.2019.02.166
    [49] SUN Fan,FAN Xueling,ZHANG Tao,et al. Numerical analysis of the influence of pore microstructure on thermal conductivity and Young’s modulus of thermal barrier coating[J]. Ceramics International,2020,46: 24326-24332. doi: 10.1016/j.ceramint.2020.06.214
    [50] 刘阳,蔡洪能,魏志远,等. 等离子喷涂热障涂层内孔隙对其隔热性能的影响[J]. 材料保护,2021,54(11): 1-9. LIU Yang,CAI Hongneng,WEI Zhiyuan,et al. Influence of the porosity on the thermal insulation performance of plasma sprayed thermal barrier coating[J]. Materials Protection,2021,54(11): 1-9. (in Chinese doi: 10.3969/j.issn.1001-1560.2021.11.clbh202111001

    LIU Yang, CAI Hongneng, WEI Zhiyuan, et al. Influence of the porosity on the thermal insulation performance of plasma sprayed thermal barrier coating[J]. Materials Protection, 2021, 54(11): 1-9. (in Chinese) doi: 10.3969/j.issn.1001-1560.2021.11.clbh202111001
    [51] 廖红星,宋鹏,周会会,等. 陶瓷层与界面孔隙率对热障涂层寿命及其失效机制的影响[J]. 复合材料学报,2016,33(8): 1785-1793. LIAO Hongxing,SONG Peng,ZHOU Huihui,et al. Effect of porosity of ceramic-coats and interface on lifetime and failure mechanism of thermal barrier coating[J]. Acta Materiae Compositae Sinica,2016,33(8): 1785-1793. (in Chinese

    LIAO Hongxing, SONG Peng, ZHOU Huihui, et al. Effect of porosity of ceramic-coats and interface on lifetime and failure mechanism of thermal barrier coating[J]. Acta Materiae Compositae Sinica, 2016, 33(8): 1785-1793. (in Chinese)
    [52] REZVANI RAD M,FARRAHI G H,AZADI M,et al. Stress analysis of thermal barrier coating system subjected to out-of-phase thermo-mechanical loadings considering roughness and porosity effect[J]. Surface and Coatings Technology,2015,262: 77-86. doi: 10.1016/j.surfcoat.2014.12.016
    [53] 史丽萍,赫晓东,李垚. EBPVD制备复合多层结构材料中残余应力的数值模拟[C]//中国硅酸盐学会2003年学术年会论文摘要集. 北京: 中国硅酸盐学会,2003: 290.
    [54] 赵运才,张佳茹,何文. 基于ANSYS生死单元法的多层等离子喷涂体系仿真[J]. 金属热处理,2017,42(12): 225-231. ZHAO Yuncai,ZHANG Jiaru,HE Wen. Simulation of multi-layer plasma spraying system based on ANSYS element death and birth method[J]. Heat Treatment of Metals,2017,42(12): 225-231. (in Chinese

    ZHAO Yuncai, ZHANG Jiaru, HE Wen. Simulation of multi-layer plasma spraying system based on ANSYS element death and birth method[J]. Heat Treatment of Metals, 2017, 42(12): 225-231. (in Chinese)
    [55] WANG L,ZHONG X H,ZHAO Y X,et al. Effect of interface on the thermal conductivity of thermal barrier coatings: a numerical simulation study[J]. International Journal of Heat and Mass Transfer,2014,79: 954-967. doi: 10.1016/j.ijheatmasstransfer.2014.08.088
    [56] 段力,高均超,汪瑞军,等. 航空发动机叶片表面热障涂层温度分布的仿真分析[J]. 上海交通大学学报,2017,51(8): 915-920. DUAN Li,GAO Junchao,WANG Ruijun,et al. Simulation analysis of temperature distribution of turbine blades by thermal buffer coating for aero engine[J]. Journal of Shanghai Jiao Tong University,2017,51(8): 915-920. (in Chinese

    DUAN Li, GAO Junchao, WANG Ruijun, et al. Simulation analysis of temperature distribution of turbine blades by thermal buffer coating for aero engine[J]. Journal of Shanghai Jiao Tong University, 2017, 51(8): 915-920. (in Chinese)
    [57] TENANGO O,JARON E L,GARCIA J C,et al. Effect of thermal barrier coating on the thermal stress of gas microturbine blades and nozzles[J]. Journal of Mechanical Engineering,2020,66(10): 581-590. doi: 10.5545/sv-jme.2020.6883
    [58] BUNKER R S. A review of shaped hole turbine film-cooling technology[J]. Journal of Heat Transfer,2005,127(4): 441-453. doi: 10.1115/1.1860562
    [59] DAVIDSON F T,KISTENMACHER D A,BOGARD D G. Film cooling with a thermal barrier coating: round holes,craters,and trenches[J]. Journal of Turbomachinery,2014,136(4): 041007. doi: 10.1115/1.4024883
    [60] LIU Z Y,ZHU W,YANG L,et al. et al. Numerical prediction of thermal insulation performance and stress distribution of thermal barrier coatings coated on a turbine vane[J]. International Journal of Thermal Sciences,2020,158: 106552. doi: 10.1016/j.ijthermalsci.2020.106552
    [61] 刘建华,刘永葆,刘莉,等. 气膜冷却涡轮导叶热障涂层热应力的数值模拟[J]. 中国表面工程,2018,31(3): 126-136. LIU Jianhua,LIU Yongbao,LIU Li,et al. Numerical modeling of thermal stress of thermal barrier coatings on a turbine vane with film cooling structure[J]. China Surface Engineering,2018,31(3): 126-136. (in Chinese doi: 10.11933/j.issn.1007-9289.20171116002

    LIU Jianhua, LIU Yongbao, LIU Li, et al. Numerical modeling of thermal stress of thermal barrier coatings on a turbine vane with film cooling structure[J]. China Surface Engineering, 2018, 31(3): 126-136. (in Chinese) doi: 10.11933/j.issn.1007-9289.20171116002
    [62] 刘志远,肖杰,杨丽,等. 涡轮叶片热障涂层隔热性能和应力数值模拟[J]. 湘潭大学学报(自然科学版),2020,42(3): 107-115. LIU Zhiyuan,XIAO Jie,YANG Li,et al. Numerical simulation of thermal insulation performance and stress of thermal barrier coatings on turbine blades[J]. Journal of Xiangtan University (Natural Science Edition),2020,42(3): 107-115. (in Chinese

    LIU Zhiyuan, XIAO Jie, YANG Li, et al. Numerical simulation of thermal insulation performance and stress of thermal barrier coatings on turbine blades[J]. Journal of Xiangtan University (Natural Science Edition), 2020, 42(3): 107-115. (in Chinese)
    [63] VASSEN,R,TRAEGER F,STOVER D. New thermal barrier coatings based on pyrochlore/YSZ double-layer systems[J]. International Journal of Applied Ceramic Technology,2004,1(4): 351-361. doi: 10.1111/j.1744-7402.2004.tb00186.x
    [64] 张勇. 1200℃烧结EB-PVD YSZ涂层微结构演变的TEM表征与分析[D]. 湘潭: 湘潭大学,2015. ZHANG Yong. TEM Characterization And Analysis of Microstructure Evolution of EB-PVD YSZ Coating Sintered at 1200℃[D]. Xiangtan: Xiangtan University,2015. (in Chinese

    ZHANG Yong. TEM Characterization And Analysis of Microstructure Evolution of EB-PVD YSZ Coating Sintered at 1200℃[D]. Xiangtan: Xiangtan University, 2015. (in Chinese)
    [65] ZHONG Xinghua,ZHAO Huayu,ZHOU Xiaming,et al. Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating[J]. Journal of Alloys and Compounds,2014,593: 50-55. doi: 10.1016/j.jallcom.2014.01.060
    [66] CHENG Bo,YANG Guanjun,ZHANG Qiang,et al. Gradient thermal cyclic behaviour of La2Zr2O7/YSZ DCL-TBCs with equivalent thermal insulation performance[J]. Journal of the European Ceramic Society,2018,38(4): 1888-1896. doi: 10.1016/j.jeurceramsoc.2017.10.058
    [67] HAN Meng,HUANG Jihua,CHEN Shuhai. Behavior and mechanism of the stress buffer effect of the inside ceramic layer to the top ceramic layer in a double-ceramic-layer thermal barrier coating[J]. Ceramics International,2014,40(2): 2901-2914. doi: 10.1016/j.ceramint.2013.10.021
    [68] SONG Yan,WU Weijie,QIN Mu,et al. Effect of geometric parameter on thermal stress generation in fabrication process of double-ceramic-layers thermal barrier coating system[J]. Journal of the European Ceramic Society,2018,38(11): 3962-3973. doi: 10.1016/j.jeurceramsoc.2018.04.049
    [69] DAI Hui,ZHONG Xinghua,LI Jiayan,et al. Thermal stability of double-ceramic-layer thermal barrier coatings with various coating thickness[J]. Materials Science and Engineering: A,2006,433(1/2): 1-7.
    [70] CHEN Qi,HU Peng,PU Jian,et al. Interfacial interaction and roughness parameters effects on the residual stresses in DCL-TBC system with different thickness distributions[J]. Ceramics International,2021,47(2): 2781-2792. doi: 10.1016/j.ceramint.2020.09.132
    [71] ABBAS M,GUO Hongbo,SHAHID M R. Comparative study on effect of oxide thickness on stress distribution of traditional and nanostructured zirconia coating systems[J]. Ceramics International,2013,39(1): 475-481. doi: 10.1016/j.ceramint.2012.06.051
    [72] WANG L,WANG Y,SUN X G,et al. Thermal shock behavior of 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying[J]. Ceramics International,2012,38(5): 3595-3606. doi: 10.1016/j.ceramint.2011.12.076
    [73] 宋振飞,秦颖,郝胜智,等. 强流脉冲电子束热障涂层表面改性温度场数值模拟[J]. 真空科学与技术学报,2008,28(6): 522-525. SONG Zhenfei,QIN Ying,HAO Shengzhi,et al. Simulation of temperature field in surface modification of thermal barrier coating deposited by high current pulsed electron beam[J]. Chinese Journal of Vacuum Science and Technology,2008,28(6): 522-525. (in Chinese

    SONG Zhenfei, QIN Ying, HAO Shengzhi, et al. Simulation of temperature field in surface modification of thermal barrier coating deposited by high current pulsed electron beam[J]. Chinese Journal of Vacuum Science and Technology, 2008, 28(6): 522-525. (in Chinese)
    [74] 王曼莉. 电子束作用下氧化锆热障涂层传热数值模拟与实验[D]. 深圳: 深圳大学,2017. WANG Manli. Numerical simulation and experiment of heat transfer of zirconia thermal barrier coating under electron beam[D]. Shenzhen: Shenzhen University,2017. (in Chinese

    WANG Manli. Numerical simulation and experiment of heat transfer of zirconia thermal barrier coating under electron beam[D]. Shenzhen: Shenzhen University, 2017. (in Chinese)
    [75] CRUSE T A,STEWART S E,ORTIZ M. Thermal barrier coating life prediction model development[J]. Journal of Engineering for Gas Turbines and Power,1988,110(4): 610-616. doi: 10.1115/1.3240179
    [76] MILLER R A. Life modeling of thermal barrier coatings for aircraft gas turbine engines[J]. Journal of Engineering for Gas Turbines and Power,1989,111(2): 301-305. doi: 10.1115/1.3240251
    [77] RENUSCH D,ECHSLER H,SCHUTZE M. Progress in life time modeling of APS-TBC Part II: critical strains,macro-cracking,and thermal fatigue[J]. Materials at High Temperatures,2004,21(2): 77-86. doi: 10.1179/mht.2004.011
    [78] BECK T,HERZOG R,TRUNOVA O,et al. Damage mechanisms and lifetime behavior of plasma-sprayed thermal barrier coating systems for gas turbines: Part II: modeling[J]. Surface and Coatings Technology,2008,202(24): 5901-5908. doi: 10.1016/j.surfcoat.2008.06.132
    [79] BUSSO E P,EVANS H E,WRIGHT L,et al. A software tool for lifetime prediction of thermal barrier coating systems[J]. Materials and Corrosion,2008,59(7): 556-565. doi: 10.1002/maco.200804138
    [80] VASSEN R,GIESEN S,STOVER D. Lifetime of plasma-sprayed thermal barrier coatings: comparison of numerical and experimental results[J]. Journal of Thermal Spray Technology,2009,18(5): 835-845.
    [81] 魏洪亮,杨晓光,齐红宇. 等离子涂层涡轮导向叶片热疲劳寿命预测研究[J]. 航空动力学报,2008,23(1): 1-8. WEI Hongliang,YANG Xiaoguang,QI Hongyu. Study on thermal fatigue life prediction for plasma sprayed thermal barrier coatings on the surface of turbine vane[J]. Journal of Aerospace Power,2008,23(1): 1-8. (in Chinese

    WEI Hongliang, YANG Xiaoguang, QI Hongyu. Study on thermal fatigue life prediction for plasma sprayed thermal barrier coatings on the surface of turbine vane[J]. Journal of Aerospace Power, 2008, 23(1): 1-8. (in Chinese)
    [82] 魏洪亮,杨晓光,齐红宇,等. 等离子涂层热疲劳失效模式及失效机理研究[J]. 航空动力学报,2008,23(2): 270-275. WEI Hongliang,YANG Xiaoguang,QI Hongyu,et al. Study of failure mode and failure mechanisms on thermal fatigue of plasma sprayed thermal barrier coatings[J]. Journal of Aerospace Power,2008,23(2): 270-275. (in Chinese

    WEI Hongliang, YANG Xiaoguang, QI Hongyu, et al. Study of failure mode and failure mechanisms on thermal fatigue of plasma sprayed thermal barrier coatings[J]. Journal of Aerospace Power, 2008, 23(2): 270-275. (in Chinese)
    [83] 姚玉东,艾延廷,关鹏,等. 基于遗传算法的热障涂层寿命微观影响因素[J]. 中国表面工程,2022,35(1): 207-219. YAO Yudong,AI Yanting,GUAN Peng,et al. Microscopic factors influencing the lifetime of thermal barrier coatings based on genetic algorithms[J]. China Surface Engineering,2022,35(1): 207-219. (in Chinese doi: 10.11933/j.issn.1007-9289.20210803001

    YAO Yudong, AI Yanting, GUAN Peng, et al. Microscopic factors influencing the lifetime of thermal barrier coatings based on genetic algorithms[J]. China Surface Engineering, 2022, 35(1): 207-219. (in Chinese) doi: 10.11933/j.issn.1007-9289.20210803001
    [84] 姚玉东,艾延廷,关鹏,等. 热障涂层热疲劳寿命预测模型研究[J]. 表面技术,2022,51(6): 267-274. YAO Yudong,AI Yanting,GUAN Peng,et al. Thermal fatigue life prediction model for thermal barrier coatings[J]. Surface Technology,2022,51(6): 267-274. (in Chinese

    YAO Yudong, AI Yanting, GUAN Peng, et al. Thermal fatigue life prediction model for thermal barrier coatings[J]. Surface Technology, 2022, 51(6): 267-274. (in Chinese)
    [85] GUAN Peng,AI Yanting,FEI Chengwei,et al. Thermal fatigue life prediction of thermal barrier coat on nozzle guide vane via master–slave model[J]. Applied Sciences,2019,9(20): 4357. doi: 10.3390/app9204357
  • 加载中
图(10)
计量
  • 文章访问数:  90
  • HTML浏览量:  35
  • PDF量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-03
  • 网络出版日期:  2024-03-06

目录

    /

    返回文章
    返回