留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速杆-盘-自耦合冲压横向射流概念的减阻防热数值模拟

王子玉 方蜀州 郭建 倪子健

王子玉, 方蜀州, 郭建, 等. 高超声速杆-盘-自耦合冲压横向射流概念的减阻防热数值模拟[J]. 航空动力学报, 2024, 39(10):20220775 doi: 10.13224/j.cnki.jasp.20220775
引用本文: 王子玉, 方蜀州, 郭建, 等. 高超声速杆-盘-自耦合冲压横向射流概念的减阻防热数值模拟[J]. 航空动力学报, 2024, 39(10):20220775 doi: 10.13224/j.cnki.jasp.20220775
WANG Ziyu, FANG Shuzhou, GUO Jian, et al. Numerical simulation on drag and heat reduction of hypersonic spike-aerodisk-self-coupled stamping lateral jet concept[J]. Journal of Aerospace Power, 2024, 39(10):20220775 doi: 10.13224/j.cnki.jasp.20220775
Citation: WANG Ziyu, FANG Shuzhou, GUO Jian, et al. Numerical simulation on drag and heat reduction of hypersonic spike-aerodisk-self-coupled stamping lateral jet concept[J]. Journal of Aerospace Power, 2024, 39(10):20220775 doi: 10.13224/j.cnki.jasp.20220775

高超声速杆-盘-自耦合冲压横向射流概念的减阻防热数值模拟

doi: 10.13224/j.cnki.jasp.20220775
详细信息
    作者简介:

    王子玉(1997-),男,博士生,主要从事高超声速飞行器气动热力学研究

    通讯作者:

    方蜀州(1968-),男,教授、博士生导师,博士,主要从事高超声速飞行器气动热力学研究。E-mail:fsz@bit.edu.cn

  • 中图分类号: V423.9

Numerical simulation on drag and heat reduction of hypersonic spike-aerodisk-self-coupled stamping lateral jet concept

  • 摘要:

    对高超声速杆-盘-自耦合冲压横向射流构型的减阻防热效果进行数值模拟。相比单纯减阻杆-气动盘,杆-盘-自耦合冲压横向射流构型将剪切层推离壁面,扩大了靠近钝体的回流区,并将分离激波推离减阻杆,再附激波强度明显减弱,组合构型减阻防热特性显著提高。研究了杆-盘-自耦合冲压横向射流构型的减阻防热机理,并研究了不同参数对减阻防热效果的影响:在研究范围内,侧向排气口角度从30°增加到90°,减阻防热效果不断提升,但是当侧向排气角度从90°增加到120°,减阻防热效果略有降低。对于侧向多排气口,第二侧向排气口距离钝体壁面越远,减阻防热性能越好。在研究范围内,减阻防热效果最好的构型,与同参数减阻杆-气动盘构型相比,钝体壁面斯坦顿数峰值降低39.7%,构型阻力系数降低19.3%。

     

  • 图 1  物理模型

    Figure 1.  Physical model

    图 2  计算网格

    Figure 2.  Computational grids

    图 3  不同网格钝体壁面压力系数分布

    Figure 3.  Pressure coefficient distributions along blunt body surface for different grids

    图 4  不同网格钝体壁面斯坦顿数分布

    Figure 4.  Stanton number distributions along blunt body surface for different grids

    图 5  实验纹影图像与计算云图对比

    Figure 5.  Comparison of experimental schlieren image and computational contour

    图 6  计算与实验钝体壁面热流密度对比

    Figure 6.  Comparison of heat flux along blunt body surface between computational and experimental results

    图 7  横向射流与超声速来流相互作用示意图[23]

    Figure 7.  Sketch of interaction between lateral jet and supersonic incoming flow[23]

    图 8  侧向射流计算马赫数云图

    Figure 8.  Computational Mach number contour of lateral jet

    图 9  计算与实验结果壁面压力对比[23]

    Figure 9.  Comparison of pressure along surface between computational and experimental results[23]

    图 10  流场马赫数和压力云图比较

    Figure 10.  Comparison of Mach number and pressure contours

    图 11  槽道内部流场马赫数和压力云图

    Figure 11.  Mach number and pressure contours in channel

    图 12  不同构型沿钝体壁面压力系数对比

    Figure 12.  Comparison of pressure coefficient along blunt body surface for different configurations

    图 13  不同构型沿钝体壁面斯坦顿数对比

    Figure 13.  Comparison of Stanton number along blunt body surface for different configurations

    图 14  不同构型阻力系数对比

    Figure 14.  Comparison of drag coefficients for different configurations

    图 15  侧向排气孔角度示意图

    Figure 15.  Sketch of jet angle

    图 16  不同侧向排气孔角度下流场马赫数云图

    Figure 16.  Mach number contours for different jet angles

    图 17  槽道内部流场马赫数和压力云图

    Figure 17.  Mach number and pressure contours in channel

    图 18  不同侧向排气孔角度槽道内质量流量对比

    Figure 18.  Comparison of mass flow rate in channel for different jet angles

    图 19  不同侧向排气孔角度下钝体壁面压力系数对比

    Figure 19.  Comparison of pressure coefficient along blunt body surface for different jet angles

    图 20  不同侧向排气孔角度下钝体壁面斯坦顿数对比

    Figure 20.  Comparison of Stanton number along blunt body surface for different jet angles

    图 21  不同侧向排气孔角度的阻力系数对比

    Figure 21.  Comparison of drag coefficients of different jet angles

    图 22  双侧向排气孔几何模型

    Figure 22.  Physical model for double jets

    图 23  单孔/双孔构型流场马赫数云图对比

    Figure 23.  Comparison of Mach number contours for single jet/double jets

    图 24  单孔/双孔构型钝体壁面压力系数对比

    Figure 24.  Comparison of pressure coefficient along blunt body surface with single jet/double jets

    图 25  单孔/双孔构型钝体壁面斯坦顿数对比

    Figure 25.  Comparison of Stanton number along blunt body surface with single jet/double jets

    图 26  单孔/双孔构型阻力系数对比

    Figure 26.  Comparison of drag coefficients of single jet/double jets

    表  1  网格信息

    Table  1.   Grid information

    类型 网格数量 壁面第一层网格高度/10−5 m
    粗网格 220525 3.5
    中等网格 316262 1
    密网格 355274 0.5
    下载: 导出CSV

    表  2  双侧向排气孔构型计算工况

    Table  2.   Cases for working conditions for double jets

    计算工况Lr1Lr2
    Case-10.50.3
    Case-20.50.4
    Case-30.60.5
    Case-40.70.5
    下载: 导出CSV
  • [1] AHMED M Y M,QIN N. Recent advances in the aerothermodynamics of spiked hypersonic vehicles[J]. Progress in Aerospace Sciences,2011,47(6): 425-449. doi: 10.1016/j.paerosci.2011.06.001
    [2] SUDARSHAN B,DEEP S,JAYARAM V,et al. Experimental study of forward-facing cavity with energy deposition in hypersonic flow conditions[J]. Physics of Fluids,2019,31(10): 106105. doi: 10.1063/1.5118751
    [3] ERFANIAN M R,MOGHIMAN M. Experimental investigation of critical air entrainment in ventilated cavitating flow for a forward facing model[J]. Applied Ocean Research,2020,97: 102089. doi: 10.1016/j.apor.2020.102089
    [4] ZHOU Zhihua,CHEN Shaowen,LI Weihang,et al. Thermal performance of blade tip and casing coolant injection on a turbine blade with cavity and winglet-cavity tip[J]. International Journal of Heat and Mass Transfer,2019,130: 585-602. doi: 10.1016/j.ijheatmasstransfer.2018.10.130
    [5] SU Hao,WANG Jianhua,HE Fei,et al. Numerical investigation on transpiration cooling with coolant phase change under hypersonic conditions[J]. International Journal of Heat and Mass Transfer,2019,129: 480-490. doi: 10.1016/j.ijheatmasstransfer.2018.09.123
    [6] SHEN Binxian,YIN Liang,LIU Hongpeng,et al. Thermal protection characteristics for a combinational opposing jet and platelet transpiration cooling nose-tip[J]. Acta Astronautica,2019,155: 143-152. doi: 10.1016/j.actaastro.2018.11.052
    [7] MENG Yushan,YAN Li,HUANG Wei,et al. Fluid-thermal coupled investigation on the combinational spike and opposing/lateral jet in hypersonic flows[J]. Acta Astronautica,2021,185: 264-282. doi: 10.1016/j.actaastro.2021.05.022
    [8] ZHU Liang,CHEN Xiong,TIAN Xiaotao,et al. Assessment on jet direction effect on drag and heat reduction efficiency for hypersonic vehicles[J]. Aerospace Science and Technology,2020,106: 105932. doi: 10.1016/j.ast.2020.105932
    [9] 陆海波,刘伟强. 凹腔尺寸对迎风凹腔与逆向喷流组合热防护系统性能的影响[J]. 航空动力学报,2012,27(12): 2666-2673. LU Haibo,LIU Weiqiang. Effect of cavity physical dimension on forward-facing cavity and opposing jet thermal protection system cooling efficiency[J]. Journal of Aerospace Power,2012,27(12): 2666-2673. (in Chinese

    LU Haibo, LIU Weiqiang. Effect of cavity physical dimension on forward-facing cavity and opposing jet thermal protection system cooling efficiency[J]. Journal of Aerospace Power, 2012, 27(12): 2666-2673. (in Chinese)
    [10] ZHONG K,YAN C,CHEN S,et al. Aerodisk effects on drag reduction for hypersonic blunt body with an ellipsoid nose[J]. Aerospace Science and Technology,2019,86: 599-612. doi: 10.1016/j.ast.2019.01.027
    [11] HUANG Wei,CHEN Zheng,YAN Li,et al. Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows: a review[J]. Progress in Aerospace Sciences,2019,105: 31-39. doi: 10.1016/j.paerosci.2018.12.001
    [12] MEHTA R C. Numerical heat transfer study over spiked blunt bodies at Mach 6.8[J]. Journal of Spacecraft and Rockets,2000,37(5): 700-703. doi: 10.2514/2.3622
    [13] MEHTA R C. Numerical analysis of pressure oscillations over axisymmetric spiked blunt bodies at Mach 6.80[J]. Shock Waves,2002,11(6): 431-440. doi: 10.1007/s001930200127
    [14] KOBAYASHI H,MARU Y,FUKIBA K. Experimental study on aerodynamic characteristics of telescopic aerospikes with multiple disks[J]. Journal of Spacecraft and Rockets,2007,44(1): 33-41. doi: 10.2514/1.25250
    [15] KHARATI-KOOPAEE M,GAZOR H. Assessment of the aerodisk size on drag reduction and thermal protection of high-bluntness vehicles at hypersonic speeds[J]. Journal of Aerospace Engineering,2017,30(4): 04017008. doi: 10.1061/(ASCE)AS.1943-5525.0000707
    [16] JIANG Zonglin,LIU Yunfeng,HAN Guilai,et al. Experimental demonstration of a new concept of drag reduction and thermal protection for hypersonic vehicles[J]. Acta Mechanica Sinica,2009,25(3): 417-419. doi: 10.1007/s10409-009-0252-8
    [17] LIU Yunfeng,JIANG Zonglin. Concept of non-ablative thermal protection system for hypersonic vehicles[J]. AIAA Journal,2013,51(3): 584-590. doi: 10.2514/1.J051875
    [18] ZHU Liang,CHEN Xiong,LI Yingkun,et al. Investigation of drag and heat reduction induced by a novel combinational lateral jet and spike concept in supersonic flows based on conjugate heat transfer approach[J]. Acta Astronautica,2018,142: 300-313. doi: 10.1016/j.actaastro.2017.11.001
    [19] ZHU Liang,LI Yingkun,CHEN Xiong,et al. Hypersonic flow characteristics and relevant structure thermal response induced by the novel combined spike-aerodome and lateral jet strategy[J]. Aerospace Science and Technology,2019,95: 105459. doi: 10.1016/j.ast.2019.105459
    [20] ZHU Liang,LI Yingkun,CHEN Xiong,et al. Novel combinational aerodisk and lateral jet concept for drag and heat reduction in hypersonic flows[J]. Journal of Aerospace Engineering,2019,32(1): 4018133. doi: 10.1061/(ASCE)AS.1943-5525.0000966
    [21] HAYASHI K,ASO S,TANI Y. Experimental study on thermal protection system by opposing jet in supersonic flow[J]. Journal of Spacecraft and Rockets,2006,43(1): 233-235. doi: 10.2514/1.15332
    [22] NARAYANA G,SELVARAJ S. Experimental investigation of heat transfer over double disk spike-blunt body at Mach 5.7[J]. Experimental Thermal and Fluid Science,2019,102: 452-466. doi: 10.1016/j.expthermflusci.2018.12.004
    [23] SPAID F W,ZUKOSKI E E. A study of the interaction of gaseous jets from transverse slots with supersonic external flows[J]. AIAA Journal,1968,6(2): 205-212. doi: 10.2514/3.4479
  • 加载中
图(26) / 表(2)
计量
  • 文章访问数:  37
  • HTML浏览量:  29
  • PDF量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-08
  • 网络出版日期:  2024-04-01

目录

    /

    返回文章
    返回