留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等压差下冲击气膜/多斜孔复合冷却特性分析

吴加州 张净玉 王龙 何小民

吴加州, 张净玉, 王龙, 等. 等压差下冲击气膜/多斜孔复合冷却特性分析[J]. 航空动力学报, 2024, 39(10):20220785 doi: 10.13224/j.cnki.jasp.20220785
引用本文: 吴加州, 张净玉, 王龙, 等. 等压差下冲击气膜/多斜孔复合冷却特性分析[J]. 航空动力学报, 2024, 39(10):20220785 doi: 10.13224/j.cnki.jasp.20220785
WU Jiazhou, ZHANG Jingyu, WANG Long, et al. Cooling characteristics analysis on impingement film with effusion under constant pressure difference[J]. Journal of Aerospace Power, 2024, 39(10):20220785 doi: 10.13224/j.cnki.jasp.20220785
Citation: WU Jiazhou, ZHANG Jingyu, WANG Long, et al. Cooling characteristics analysis on impingement film with effusion under constant pressure difference[J]. Journal of Aerospace Power, 2024, 39(10):20220785 doi: 10.13224/j.cnki.jasp.20220785

等压差下冲击气膜/多斜孔复合冷却特性分析

doi: 10.13224/j.cnki.jasp.20220785
基金项目: 国家科技重大专项(2017-Ⅲ-0008-0034)
详细信息
    作者简介:

    吴加州(1998−),男,硕士生,主要从事燃烧室火焰筒冷却研究

    通讯作者:

    张净玉(1973−),女,教授、博士生导师,博士,主要从事燃烧室高温部件冷却研究。E-mail:zjyhxm@nuaa.edu.cn

  • 中图分类号: V312

Cooling characteristics analysis on impingement film with effusion under constant pressure difference

  • 摘要:

    针对某型斜流驻涡燃烧室的火焰筒连续壁面短、气膜叠加效果差等问题,构建了冲击气膜/多斜孔复合的冷却结构。在等压差条件下开展了多种冷却方案的综合冷效试验研究,同时结合数值仿真,获得了冷/热流压差、狭缝-多斜孔间距比、冲击间距比等参数对流动和综合冷效的影响规律。结果表明:与单一的多斜孔和冲击气膜结构相比,冲击气膜/多斜孔复合冷却方案有效解决了气膜初始段冷效不高、轴向壁温分布不均匀的问题,面积平均综合冷效相比纯多斜孔冷却提升约3.2%;增大冷/热流压差可显著提高综合冷效,狭缝-多斜孔间距比过大不利于下游气膜的叠加,而冲击间距比的减小能够明显提升冲击气膜段的综合冷效。

     

  • 图 1  试验件结构示意图

    Figure 1.  Schematic diagram of test plate

    图 2  热电偶测点示意图(单位:mm)

    Figure 2.  Schematic diagram of thermocouple measuring points (unit:mm)

    图 3  试验系统示意图

    Figure 3.  Schematic diagram of test system

    图 4  试验系统实物图

    Figure 4.  Physical diagram of test system

    图 5  试验段示意图

    Figure 5.  Schematic diagram of test section

    图 6  斜流驻涡燃烧室模型和流动示意图

    Figure 6.  Schematic diagram of model and flow of oblique flow vortex combustor

    图 7  计算模型

    Figure 7.  Computational model

    图 8  网格独立性验证

    Figure 8.  Grid independence verification

    图 9  计算网格示意

    Figure 9.  Schematic diagram of computational mesh

    图 10  湍流模型对比(No.1方案,Δp=4.5 kPa)

    Figure 10.  Comparison of turbulence models(scheme of No.1,Δp=4.5 kPa)

    图 11  不同冷却方案综合冷效对比(Δp=19.5 kPa,试验结果)

    Figure 11.  Comparison of overall cooling effectiveness of different cooling schemes (Δp=19.5 kPa,experimental results)

    图 12  不同冷却方案的仿真结果 (Δp=19.5 kPa)

    Figure 12.  Simulation results of different cooling schemes (Δp=19.5 kPa)

    图 13  不同压差下综合冷效对比(No.1方案,试验结果)

    Figure 13.  Comparison of overall cooling effectiveness of different pressure differences (scheme of No.1,experimental results)

    图 14  综合冷效及Mpa随压差变化(No.1方案,试验结果)

    Figure 14.  Variation of overall cooling effectiveness and Mpa with pressure difference (scheme of No.1,experimental results)

    图 15  不同Ln下综合冷效对比(试验结果)

    Figure 15.  Comparison of overall cooling effectiveness of different Ln (experimental results)

    图 16  不同Ln下的仿真结果 (Δp =19.5 kPa)

    Figure 16.  Simulation results of different Ln (Δp =19.5 kPa)

    图 17  不同Zn下综合冷效对比(Δp=19.5 kPa,试验结果)

    Figure 17.  Comparison of overall cooling effectiveness of different Zn (Δp=19.5 kPa,experimental results)

    图 18  不同Zn下的仿真结果 (Δp =19.5 kPa)

    Figure 18.  Simulation results of different Zn (Δp =19.5 kPa)

    图 19  所有结构平均综合冷效对比(试验结果)

    Figure 19.  Comparison of average overall cooling effectiveness of all cooling structures (experimental results)

    图 20  所有结构Mpa对比(试验结果)

    Figure 20.  Comparison of Mpa of all cooling structures (experimental results)

    表  1  几何结构参数

    Table  1.   Geometry parameters

    方案 Dj/mm Yn1 Zn Ln Dm/mm Xn Yn2
    No.1(基准) 1.2 1.6 1.5 15.56 0.5 8 4
    No.2 1.2 1.6 1.5 20.00 0.5 8 4
    No.3 1.2 1.6 1.5 24.44 0.5 8 4
    No.4 1.2 1.6 1.0 15.56 0.5 8 4
    No.5 1.2 1.6 2.0 15.56 0.5 8 4
    No.6 1.2 1.6 1.5 15.56
    No.7 0.5 8 4
    下载: 导出CSV

    表  2  物理量和相对测试不确定度

    Table  2.   Physical quantities and relative uncertainty

    物理量数值不确定度/%
    Tc/K314~324±(0.15~0.16)
    Th/K473±0.11
    Tw/K323~353±(0.14~0.15)
    η0.76~1.0±(0.13~1.65)
    下载: 导出CSV

    表  3  试验工况参数

    Table  3.   Operating parameters of experiment

    编号 冷流温度/K 冷流压力/kPa 热流温度/K 热流压力/kPa
    1 318 106.325 473 101.825
    2 318 112.325 473 101.825
    3 318 121.325 473 101.825
    4 318 127.325 473 101.825
    下载: 导出CSV

    表  4  不同冷却方案Mpaηave对比(Δp=19.5 kPa,试验结果)

    Table  4.   Comparison of Mpa and ηave of different cooling schemes (Δp=19.5 kPa,experimental results)

    方案ηaveMpa
    No.10.9030.61
    No.60.8680.68
    No.70.8750.57
    下载: 导出CSV

    表  5  不同LnMpaηave对比(试验结果)

    Table  5.   Comparison of Mpa and ηave of different Ln (experimental results)

    方案 Δp=4.5 kPa Δp=19.5 kPa
    ηave Mpa ηave Mpa
    No.1 0.858 0.37 0.903 0.61
    No.2 0.838 0.44 0.901 0.67
    No.3 0.814 0.4 0.876 0.63
    下载: 导出CSV

    表  6  不同ZnMpaηave对比(Δp=19.5 kPa,试验结果)

    Table  6.   Comparison of Mpa and ηave of different Zn Δp=19.5 kPa,experimental results)

    方案ηaveMpa
    No.40.9300.67
    No.10.9030.61
    No.50.8890.69
    下载: 导出CSV
  • [1] LEFEBVRE A H. Gas turbine combustion[M]. Washington,US: Hemisphere Pub,1983.
    [2] MONGIA H,GORE J,GRINSTEIN F,et al. Combustion research needs for helping development of next-generation advanced combustors[R]. AIAA2001-3853,2001.
    [3] 臧颖恺. 狭缝引射气膜冷却下的PIV实验和数值模拟[D]. 上海: 上海交通大学,2013. ZANG Yingkai. Slit ejector gas film cooling of PIV experiment and numerical simulation[D]. Shanghai: Shanghai Jiao Tong University,2013. (in Chinese

    ZANG Yingkai. Slit ejector gas film cooling of PIV experiment and numerical simulation[D]. Shanghai: Shanghai Jiao Tong University, 2013. (in Chinese)
    [4] ZHANG Jingyu,WEI Jieli,et al. Experimental investigation on the adiabatic cooling effectiveness of impinging-film cooling[R]. Cairns,Australia: 7th Asia-Pacific International Symposium on Aerospace Technology,2015.
    [5] 王菲. 某型三级旋流燃烧室的冲击/气膜冷却方案研究[D]. 南京: 南京航空航天大学,2013. WANG Fei. Research on impingement/film cooling technique of triple-swirler combustor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2013. (in Chinese

    WANG Fei. Research on impingement/film cooling technique of triple-swirler combustor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. (in Chinese)
    [6] WEI Jieli,ZHANG Jingyu,LI Shuai,et al. Numerical study on impinging-film hybrid cooling effect with different geometries[J]. International Journal of Thermal Sciences,2015,92: 199-216. doi: 10.1016/j.ijthermalsci.2015.01.038
    [7] ZHANG Jingyu,YUAN Ce,JI Pengfei,et al. Experimental investigation on the overall cooling effectiveness of t-type impinging-film cooling[J]. Applied Thermal Engineering,2018,128: 595-603. doi: 10.1016/j.applthermaleng.2017.09.058
    [8] 袁策. 带导流板的冲击/气膜流动与换热特性研究[D]. 南京: 南京航空航天大学,2018. YUAN Ce. Research on flow and heat transfer characteristics of impinging/film with inducting slab[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2018. (in Chinese

    YUAN Ce. Research on flow and heat transfer characteristics of impinging/film with inducting slab[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
    [9] BALLAL D R,LEFEBVRE A H. A proposed method for calculating film-cooled wall temperatures in gas turbine combustion chamber[J]. Journal of Turbomachinery,2013(6): 12-14.
    [10] VIARS P R. The impact of IHPTET on the engine/aircraft system[R]. AIAA-89-2137,1989.
    [11] 林宇震,宋波,李彬,等. 多斜孔壁冷却方式小孔内对流换热研究[J]. 航空动力学报,1999,14(1): 87-90. (in Chinese) LIN Yuzhen,SONG Bo,LI Bin,et al. A study on convective heat transfer in holes of inclined multihole wall film cooling[J]. Journal of Aerospace Power,1999,14(1): 87-90. (in Chinese doi: 10.3969/j.issn.1000-8055.1999.01.021

    LIN Yuzhen, SONG Bo, LI Bin, et al. A study on convective heat transfer in holes of inclined multihole wall film cooling[J]. Journal of Aerospace Power, 1999, 14(1): 87-90. (in Chinese) doi: 10.3969/j.issn.1000-8055.1999.01.021
    [12] LIGRANI P,GOODRO M,FOX M,et al. Full-coverage film cooling: film effectiveness and heat transfer coefficients for dense hole arrays at different hole angles,contraction ratios,and blowing ratios[J]. Journal of Heat Transfer,2013,135(3): 031707. doi: 10.1115/1.4007981
    [13] 陈亚林. 高温升燃烧室冷却方案研究[D]. 南京: 南京航空航天大学,2013. CHEN Yalin. Research on cooling technology of high temperature rise combustor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2013. (in Chinese

    CHEN Yalin. Research on cooling technology of high temperature rise combustor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. (in Chinese)
    [14] BERNHARD GUSTAFSSON K M,JOHANSSON T G. An experimental study of surface temperature distribution on effusion-cooled plates[J]. Journal of Engineering for Gas Turbines and Power,2001,123(2): 308-316. doi: 10.1115/1.1364496
    [15] ANDREWS G E,GUPTA M L,MKPADI M C. Full coverage discrete hole film cooling: cooling effectiveness[J]. International Journal of Turbo and Jet Engines,1985,2(3): 199-212.
    [16] 刘捷,韩振兴,蒋洪德,等. 不同复合角对平板气膜冷却特性影响的实验研究[J]. 工程热物理学报,2008,29(8): 1311-1315. LIU Jie,HAN Zhenxing,JIANG Hongde,et al. Experimental research on flat plate film cooling effectiveness at different complex angles[J]. Journal of Engineering Thermophysics,2008,29(8): 1311-1315. (in Chinese doi: 10.3321/j.issn:0253-231X.2008.08.012

    LIU Jie, HAN Zhenxing, JIANG Hongde, et al. Experimental research on flat plate film cooling effectiveness at different complex angles[J]. Journal of Engineering Thermophysics, 2008, 29(8): 1311-1315. (in Chinese) doi: 10.3321/j.issn:0253-231X.2008.08.012
    [17] 陈伟,董若凌,施红辉,等. 冷却孔复合角和排列方式综合作用对平板气膜冷却效果的影响[J]. 浙江理工大学学报,2013,30(4): 540-545. CHEN Wei,DONG Ruoling,SHI Honghui,et al. Influence of combined action of compound angle and arrangement mode of cooling holes on flat air film cooling effect[J]. Journal of Zhejiang Sci-Tech University,2013,30(4): 540-545. (in Chinese doi: 10.3969/j.issn.1673-3851.2013.04.015

    CHEN Wei, DONG Ruoling, SHI Honghui, et al. Influence of combined action of compound angle and arrangement mode of cooling holes on flat air film cooling effect[J]. Journal of Zhejiang Sci-Tech University, 2013, 30(4): 540-545. (in Chinese) doi: 10.3969/j.issn.1673-3851.2013.04.015
    [18] 黄卫东. 涡轴发动机斜流驻涡燃烧室性能研究[D]. 南京: 南京航空航天大学,2016. HUANG Weidong. Study on performance of oblique flow trapped vortex combustor for turboshaft engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2016. (in Chinese

    HUANG Weidong. Study on performance of oblique flow trapped vortex combustor for turboshaft engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
    [19] 王嘉玺. 斜流驻涡燃烧室冷却性能研究[D]. 南京: 南京航空航天大学,2019. WANG Jiaxi. Research on cooling technology of an oblique flow trapped vortex combustor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2019. (in Chinese

    WANG Jiaxi. Research on cooling technology of an oblique flow trapped vortex combustor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. (in Chinese)
  • 加载中
图(20) / 表(6)
计量
  • 文章访问数:  36
  • HTML浏览量:  35
  • PDF量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-13
  • 网络出版日期:  2024-04-01

目录

    /

    返回文章
    返回