留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同轴向间距对对转螺旋桨气动和声学特性的影响机理

冯和英 崔盼望 仝帆 陈正武 李抢斌

冯和英, 崔盼望, 仝帆, 等. 不同轴向间距对对转螺旋桨气动和声学特性的影响机理[J]. 航空动力学报, 2024, 39(10):20220838 doi: 10.13224/j.cnki.jasp.20220838
引用本文: 冯和英, 崔盼望, 仝帆, 等. 不同轴向间距对对转螺旋桨气动和声学特性的影响机理[J]. 航空动力学报, 2024, 39(10):20220838 doi: 10.13224/j.cnki.jasp.20220838
FENG Heying, CUI Panwang, TONG Fan, et al. Influence mechanism of different axial spacings on aerodynamic and acoustic characteristics of counter-rotating propeller[J]. Journal of Aerospace Power, 2024, 39(10):20220838 doi: 10.13224/j.cnki.jasp.20220838
Citation: FENG Heying, CUI Panwang, TONG Fan, et al. Influence mechanism of different axial spacings on aerodynamic and acoustic characteristics of counter-rotating propeller[J]. Journal of Aerospace Power, 2024, 39(10):20220838 doi: 10.13224/j.cnki.jasp.20220838

不同轴向间距对对转螺旋桨气动和声学特性的影响机理

doi: 10.13224/j.cnki.jasp.20220838
基金项目: 国家自然科学基金(51875194,12102451); 湖南省自然科学基金(2022JJ30249); 湖南省教育厅优秀青年基金(20B226)
详细信息
    作者简介:

    冯和英(1983-),女,教授,博士,主要从事气动声学研究

    通讯作者:

    仝帆(1990-),男,高级工程师,博士,主要研究方向为叶轮机械气动声学、仿生降噪技术研究。E-mail:tongfan@cardc.cn

  • 中图分类号: V211.3

Influence mechanism of different axial spacings on aerodynamic and acoustic characteristics of counter-rotating propeller

  • 摘要:

    基于非线性谐波法和声类比理论,研究了转子轴向间距对对转螺旋桨气动特性和噪声的影响规律及其物理机制。以某型对转螺旋桨为研究对象,研究了6种具有不同转子轴向间距的对转螺旋桨模型。计算结果表明:对转螺旋桨转子轴向间距的变化对对转螺旋桨总效率有一定的影响,对总拉力系数和总功率系数影响不大。转子轴向间距的增大,对前后排转子之间的轴向速度有显著的影响,对转子后气流轴向速度影响不大。随着转子轴向间距的增大,前后排转子之间的径向速度逐渐减小,进而减弱了对转螺旋桨转子间的滑流收缩。通过改变转子轴向间距,相比最小轴向间距,对转螺旋桨噪声最大降低约10 dB,干涉噪声降低约10 dB以上,效率提升了1.4%。随着转子轴向间距的增大,前排转子85%叶高处的压力面和吸力面1阶谐波压力幅值在尾缘处分别降低1836 Pa(89%)和1277 Pa(90%),后排转子75%叶高处的压力面和吸力面3阶谐波压力幅值在前缘处分别降低266 Pa(78%)和209 Pa(85%)。

     

  • 图 1  对转螺旋桨的几何布局

    Figure 1.  Geometric layout of counter-rotating propeller

    图 2  转子轴向间距示意图

    Figure 2.  Schematic diagram of rotor spacing

    图 3  不同轴向间距的计算模型

    Figure 3.  Calculation model of different axial spacings

    图 4  计算域与边界条件示意图

    Figure 4.  Sketch of computation domain and boundary conditions

    图 5  网格无关性验证

    Figure 5.  Grid independence verification

    图 6  不同轴向间距S对前排转子气动性能的影响

    Figure 6.  Influence of different axial spacing S on aerodynamic performance of front rotor

    图 7  不同轴向间距S对后排转子气动性能的影响

    Figure 7.  Influence of different axial spacing S on aerodynamic performance of rear rotor

    图 8  不同轴向间距S对对转螺旋桨气动性能的影响

    Figure 8.  Influence of different axial spacing S on aerodynamic performance of counter-rotating propeller

    图 9  子午面流线及马赫数云图

    Figure 9.  Streamline and Mach number cloud map on a meridional plane

    图 10  对转螺旋桨不同截面位置示意图

    Figure 10.  Schematic diagram of different cross-section position of the counter-rotating propeller

    图 11  对转螺旋桨轴向时均速度的径向分布

    Figure 11.  Radial profiles of the time-averaged axial velocity of the counter-rotating propeller

    图 12  对转螺旋桨径向时均速度的径向分布

    Figure 12.  Radial profiles of radial time-averaged velocity of the counter-rotating propeller

    图 13  传声器位置示意图

    Figure 13.  Microphone location diagram

    图 14  不同频率下对转螺旋桨声指向性

    Figure 14.  Acoustic directivity of counter-rotating propellers at different frequencies

    图 15  对转螺旋桨远场辐射噪声总声压级分布

    Figure 15.  Total sound pressure level distribution of far field radiated noise from counter-rotating propeller

    图 16  不同角度下总声压级随转子轴向间距的变化

    Figure 16.  Variation of total sound pressure level with rotor axial spacing at different angles

    图 17  前排转子叶片表面上的1阶谐波压力幅值分布

    Figure 17.  1st harmonic pressure amplitude distribution on the front row rotor blade surface

    图 18  85%叶高处前排转子1阶谐波压力幅值

    Figure 18.  1st harmonic pressure amplitude of front rotor at 85% blade height

    图 19  后排转子叶片表面上的3阶谐波压力幅值分布

    Figure 19.  3rd harmonic pressure amplitude distribution on the rear rotor blade surface

    图 20  75%叶高处后排转子3阶谐波压力幅值

    Figure 20.  3rd harmonic pressure amplitude of rear rotor at 75% blade height

    表  1  对转螺旋桨几何参数

    Table  1.   Geometric parameters of counter-rotating propeller

    参数 前排转子 后排转子
    叶片数 6 6
    转速/(r/s) 107.5 −107.5
    直径D/m 0.658 0.658
    下载: 导出CSV

    表  2  气动力网格无关性验证

    Table  2.   Grid independence verification for aerodynamic performance

    网格
    数量/104
    推力/N 误差/%
    前排 后排 前排 后排
    600 −558.78 −618.00 −0.15 −1.44
    1000 −558.96 −625.80 −0.12 −0.20
    1300 −559.62 −627.00
    2000 −559.00 −627.60 −0.11 0.10
    下载: 导出CSV
  • [1] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社,2006.
    [2] 周莉,是介,王占学. 开式转子发动机研究进展[J]. 推进技术,2019,40(9): 1921-1932. ZHOU Li,SHI Jie,WANG Zhanxue. Research progress in open rotor engine[J]. Journal of Propulsion Technology,2019,40(9): 1921-1932. (in Chinese

    ZHOU Li, SHI Jie, WANG Zhanxue. Research progress in open rotor engine[J]. Journal of Propulsion Technology, 2019, 40(9): 1921-1932. (in Chinese)
    [3] 严成忠. 绿色动力: 开式转子航空发动机[J]. 航空科学技术,2013,24(1): 6-12. YAN Chengzhong. Green power: open rotor aero-engine[J]. Aeronautical Science & Technology,2013,24(1): 6-12. (in Chinese

    YAN Chengzhong. Green power: open rotor aero-engine[J]. Aeronautical Science & Technology, 2013, 24(1): 6-12. (in Chinese)
    [4] 张帅,夏明,钟伯文. 民用飞机气动布局发展演变及其技术影响因素[J]. 航空学报,2016,37(1): 30-44. ZHANG Shuai,XIA Ming,ZHONG Bowen. Evolution and technical factors influencing civil aircraft aerodynamic configuration[J]. Acta Aeronautica et Astronautica Sinica,2016,37(1): 30-44. (in Chinese

    ZHANG Shuai, XIA Ming, ZHONG Bowen. Evolution and technical factors influencing civil aircraft aerodynamic configuration[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 30-44. (in Chinese)
    [5] 王启航,周莉,王占学. 对转开式转子气动设计方法[J]. 航空动力学报,2024,39(1):20210175 . WANG Qihang,ZHOU Li,WANG Zhanxue. Aeodynamic design method of comtra-rotating open rotor[J]. Journal of Aerospace Power, 2024, 39(1): 20210175 . (in Chinese

    WANG Qihang, ZHOU Li, WANG Zhanxue. Aeodynamic design method of comtra-rotating open rotor[J]. Journal of Aerospace Power, 2024, 39(1): 20210175. (in Chinese)
    [6] VAN ZANTE D E,COLLIER F,ORTON A,et al. Progress in open rotor propulsors: the FAA/GE/NASA open rotor test campaign[J]. The Aeronautical Journal,2014,118(1208): 1181-1213. doi: 10.1017/S0001924000009842
    [7] KINGAN M J,PARRY A B. Acoustic theory of the many-bladed contra-rotating propeller: the effects of sweep on noise enhancement and reduction[J]. Journal of Sound and Vibration,2020,468: 115089. doi: 10.1016/j.jsv.2019.115089
    [8] HORVÁTH C,ENVIA E,PODBOY G G. Limitations of phased array beamforming in open rotor noise source imaging[J]. AIAA Journal,2014,52(8): 1810-1817. doi: 10.2514/1.J052952
    [9] PETERS A,SPAKOVSZKY Z S. Rotor interaction noise in counter-rotating propfan propulsion systems[J]. Journal of Turbomachinery,2012,134(1): 011002.1-011002.12.
    [10] HUBBARD H H. Sound from dual-rotating and multiple single-rotating propellers[R]. NACA TN No. 1654,1948.
    [11] HAGER R,VRABEL D. Advanced turboprop project[R]. NASA SP-495,1988.
    [12] WOODWARD R P. Noise of two high-speed model counter-rotation propellers at takeoff/approach conditions[J]. Journal of Aircraft,1992,29(4): 679-685. doi: 10.2514/3.46219
    [13] DITTMAR J,STANG D B. Noise reduction for model counterrotation propeller at cruise by reducing aft-propeller diameter[R]. Indianapolis,US: 113th Meeting of the Acoustical Society of America,1987.
    [14] DITTMAR J,GORDON E,JERACKI R J. The effect of front-to-rear propeller spacing on the interaction noise at cruise conditions of a model counterrotation propeller having a reduced diameter aft propeller[R]. NASA-TM-101329,1988.
    [15] SPALART P,TRAVIN A,SHUR M,et al. Initial noise predictions for open rotors using first principles[R]. AIAA 2010-3973,2010.
    [16] SMITH D A,FILIPPONE A,BARAKOS G N. Noise source analysis in counter-rotating open rotors[J]. AIAA Journal,2022,60(3): 1783-1796. doi: 10.2514/1.J060886
    [17] STUERMER A,YIN Jianping. Installation impact on pusher CROR engine low speed performance and noise emission characteristics[J]. International Journal of Engineering Systems Modelling and Simulation,2012,4(1/2): 59-68. doi: 10.1504/IJESMS.2012.044844
    [18] 史文博,李杰. 对转螺旋桨流场气动干扰数值模拟[J]. 航空动力学报,2019,34(4): 829-837. SHI Wenbo,LI Jie. Numerical simulation of contra-rotating propeller flowfield aerodynamic interactions[J]. Journal of Aerospace Power,2019,34(4): 829-837. (in Chinese

    SHI Wenbo, LI Jie. Numerical simulation of contra-rotating propeller flowfield aerodynamic interactions[J]. Journal of Aerospace Power, 2019, 34(4): 829-837. (in Chinese)
    [19] 夏贞锋,杨永. 对转开式转子非定常气动干扰特性分析[J]. 航空动力学报,2014,29(4): 835-843. XIA Zhenfeng,YANG Yong. Characteristic analysis of unsteady aerodynamic interactions of contra rotating open rotor[J]. Journal of Aerospace Power,2014,29(4): 835-843. (in Chinese

    XIA Zhenfeng, YANG Yong. Characteristic analysis of unsteady aerodynamic interactions of contra rotating open rotor[J]. Journal of Aerospace Power, 2014, 29(4): 835-843. (in Chinese)
    [20] 袁培博. 高效对转桨扇级间气动干涉规律与实验验证研究[D]. 南京: 南京航空航天大学,2021. YUAN Peibo. Research on aerodynamic interference law and experimental validation of high efficiency contra rotating prop-fan[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2021. (in Chinese

    YUAN Peibo. Research on aerodynamic interference law and experimental validation of high efficiency contra rotating prop-fan[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021. (in Chinese)
    [21] 蔡明轩. 对转螺旋桨级间气动干涉研究[D]. 南京: 南京航空航天大学,2018. CAI Mingxuan. Research on aerodynamic interference between contra rotating propellers[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2018. (in Chinese

    CAI Mingxuan. Research on aerodynamic interference between contra rotating propellers[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
    [22] 孙晓峰,胡宗安. 桨扇的气动弹性力学和气动声学[J]. 航空动力学报,1987,2(4): 299-302,368. SUN Xiaofeng,HU Zongan. On aeroelasticity and aeroacoustics of propfan[J]. Journal of Aerospace Power,1987,2(4): 299-302,368. (in Chinese

    SUN Xiaofeng, HU Zongan. On aeroelasticity and aeroacoustics of propfan[J]. Journal of Aerospace Power, 1987, 2(4): 299-302, 368. (in Chinese)
    [23] 李晓东,孙晓峰,胡宗安,等. 考虑飞机舱壁影响的螺旋桨声场时域预测法[J]. 航空学报,1993,14(11): 585-591. LI Xiaodong,SUN Xiaofeng,HU Zongan,et al. A time domain method for propeller noise prediction including aircraft fuselage effect[J]. Acta Aeronautica et Astronautica Sinica,1993,14(11): 585-591. (in Chinese

    LI Xiaodong, SUN Xiaofeng, HU Zongan, et al. A time domain method for propeller noise prediction including aircraft fuselage effect[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(11): 585-591. (in Chinese)
    [24] 严成忠. 开式转子发动机[M]. 北京: 航空工业出版社,2016.
    [25] 中国空气动力研究与发展中心. 对转螺旋桨气动力和气动噪声试验圆满完成[EB/OL]. [2022-10-01]. https://www.cardc.cn/News-Read.Asp?Channelld=2&Classld=5&ld=323.
    [26] 陈正武,姜裕标,赵昱等. 对转螺旋桨气动力和气动噪声风洞试验技术[J]. 航空动力学报,2024,39(1):20220476. CHEN Zhengwu,JIANG Yubiao,ZHAO Yu,et al. The counter-rotating propellers aerodynamic and aerodynamic noise test technology in wind tunnel[J]. Journal of Aerospace Power, 2024, 39(1): 20220476. (in Chinese

    CHEN Zhengwu, JIANG Yubiao, ZHAO Yu, et al. The counter-rotating propellers aerodynamic and aerodynamic noise test technology in wind tunnel[J]. Journal of Aerospace Power, 2024, 39(1): 20220476. (in Chinese)
    [27] 王雷,刘波. 非线性谐波法在对转压气机中的校检分析[J]. 航空动力学报,2012,27(7): 1448-1455. WANG Lei,LIU Bo. Validation of nonlinear harmonic method in dual-stage counter-rotating compressor[J]. Journal of Aerospace Power,2012,27(7): 1448-1455. (in Chinese

    WANG Lei, LIU Bo. Validation of nonlinear harmonic method in dual-stage counter-rotating compressor[J]. Journal of Aerospace Power, 2012, 27(7): 1448-1455. (in Chinese)
    [28] HE L,CHEN T,WELLS R G,et al. Analysis of rotor-rotor and stator-stator interferences in multi-stage turbomachines[J]. Journal of Turbomachinery, 124(4): 564-571.
    [29] 赵军,刘宝杰. 基于非线性谐波法的跨声速压气机确定应力建模[J]. 航空动力学报,2015,30(10): 2440-2449. ZHAO Jun,LIU Baojie. Deterministic stress modelling in transonic compressor based on nonlinear harmonic method[J]. Journal of Aerospace Power,2015,30(10): 2440-2449. (in Chinese

    ZHAO Jun, LIU Baojie. Deterministic stress modelling in transonic compressor based on nonlinear harmonic method[J]. Journal of Aerospace Power, 2015, 30(10): 2440-2449. (in Chinese)
    [30] 药晓江,董景新,尚捷,等. 非线性谐波法在叶轮机械非定常计算中的应用[J]. 推进技术,2016,37(4): 632-639. YAO Xiaojiang,DONG Jingxin,SHANG Jie,et al. Application of non-linear harmonic in turbomarchinery 3D flow field unsteady simulation[J]. Journal of Propulsion Technology,2016,37(4): 632-639. (in Chinese

    YAO Xiaojiang, DONG Jingxin, SHANG Jie, et al. Application of non-linear harmonic in turbomarchinery 3D flow field unsteady simulation[J]. Journal of Propulsion Technology, 2016, 37(4): 632-639. (in Chinese)
    [31] 崔盼望,仝帆,冯和英,等. 后排转子直径对对转螺旋桨气动和声学特性的影响[J]. 航空动力学报,2022,37(8): 1749-1760. CUI Panwang,TONG Fan,FENG Heying,et al. Influence of rear rotor diameter on aerodynamic and acoustic characteristics of counter-rotating proeller[J]. Journal of Aerospace Power,2022,37(8): 1749-1760. (in Chinese

    CUI Panwang, TONG Fan, FENG Heying, et al. Influence of rear rotor diameter on aerodynamic and acoustic characteristics of counter-rotating proeller[J]. Journal of Aerospace Power, 2022, 37(8): 1749-1760. (in Chinese)
    [32] DECONINCK T,CAPRON A,HIRSCH C,et al. Prediction of near-and far-field noise generated by contra-rotating open rotors[J]. International Journal of Aeroacoustics,2012,11(2): 177-196. doi: 10.1260/1475-472X.11.2.177
    [33] FERRANTE P,VILMIN S,HIRSCH C,et al. Integrated “CFD - acoustic” computational approach to the simulation of a contra rotating open rotor at angle of attack[R]. AIAA-2013-2242,2013.
    [34] WEI Chunhua,JIAO Lingrui,TONG Fan,et al. Pressure field measurements on large-scale propeller blades using pressure-sensitive paint[J]. Acta Mechanica Sinica,2022,38(2): 121366.
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  60
  • HTML浏览量:  26
  • PDF量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-03
  • 网络出版日期:  2024-02-21

目录

    /

    返回文章
    返回