留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自动变桨距螺旋桨电推进系统能效优化方法

魏宝泽 杨勇 张新榃 张驰

魏宝泽, 杨勇, 张新榃, 等. 自动变桨距螺旋桨电推进系统能效优化方法[J]. 航空动力学报, 2023, 38(3):717-727 doi: 10.13224/j.cnki.jasp.20220880
引用本文: 魏宝泽, 杨勇, 张新榃, 等. 自动变桨距螺旋桨电推进系统能效优化方法[J]. 航空动力学报, 2023, 38(3):717-727 doi: 10.13224/j.cnki.jasp.20220880
WEI Baoze, YANG Yong, ZHANG Xintan, et al. Energy efficiency optimization method of automatic variable pitch propeller electric propulsion system[J]. Journal of Aerospace Power, 2023, 38(3):717-727 doi: 10.13224/j.cnki.jasp.20220880
Citation: WEI Baoze, YANG Yong, ZHANG Xintan, et al. Energy efficiency optimization method of automatic variable pitch propeller electric propulsion system[J]. Journal of Aerospace Power, 2023, 38(3):717-727 doi: 10.13224/j.cnki.jasp.20220880

自动变桨距螺旋桨电推进系统能效优化方法

doi: 10.13224/j.cnki.jasp.20220880
详细信息
    作者简介:

    魏宝泽(1990-),男,工程师,硕士,主要从事航空发动机总体性能设计与仿真、新能源航空动力的总体设计等研究

  • 中图分类号: V237

Energy efficiency optimization method of automatic variable pitch propeller electric propulsion system

  • 摘要:

    为了提升自动变桨距螺旋桨电推进系统的整体效率,引入最优功率控制规律:自动变桨距螺旋桨电推进系统可根据飞行工况和推力需求,同时调节桨距角和螺旋桨转速两个变量,最终获得一组桨距角和螺旋桨转速的组合,使得推进系统在满足推力需求的情况下实现最小的功率消耗,最终达成飞行任务剖面内最小能耗控制的目标。为了验证方法的有效性,针对同一电推进系统,分别采用最优功率控制规律和恒速控制规律完成相同的飞行任务剖面,获得了两种控制规律下的螺旋桨推进效率、电动机效率、电推进系统总效率和电推进系统能耗数据。结果证明:相较于恒速控制规律,最优功率控制规律能够有效的提升电推进系统效率并降低能耗,完成相同飞行任务剖面的能耗降低6.3%左右。

     

  • 图 1  电推进系统基本架构示意图

    Figure 1.  Schematic diagram of basic electrical propulsion system architecture

    图 2  典型通航飞机的飞行任务剖面

    Figure 2.  Typical general aircraft mission profiles

    图 3  供应商提供的UQM PowerPhase 145电动机效率特性图

    Figure 3.  Manufacturer's motor efficiency map of UQM PowerPhase 145

    图 4  基于UQM PowerPhase 145的参数化电动机模型效率特性图(单位:%)

    Figure 4.  Efficiency map of parameter motor model based on UQM PowerPhase 145 (unit:%)

    图 5  供应商数据与参数化电动机模型计算结果的对比

    Figure 5.  Comparison of manufacturer’s data and calculation results of parameter motor model

    图 6  典型定桨距螺旋桨性能图

    Figure 6.  Performance map of typical fixed pitch propeller

    图 7  典型变桨距螺旋桨性能图

    Figure 7.  Performance map of typical variable pitch propeller

    图 8  HS01变桨距螺旋桨性能图

    Figure 8.  Performance map of HS01 variable pitch propeller

    图 9  模型计算结果与真实数据的对比

    Figure 9.  Comparison of model calculation results with real data

    图 10  典型变桨距螺旋桨定$C_{{T}}^0$螺旋桨性能图(给定飞行工况和推力需求)

    Figure 10.  Performance map of typical variable pitch propeller depicting constant $C_{{T}}^0$ (given flight condition and thrust requirement)

    图 11  飞行工况及推力需求

    Figure 11.  Flight conditions and thrust requirements

    图 12  电推进系统及部件效率特性曲线(最优功率控制规律)

    Figure 12.  Characteristic curves of electric propulsion system and components efficiency (optimal power control)

    图 13  电推进系统及部件效率特性曲线(恒速控制规律)

    Figure 13.  Characteristic curves of electric propulsion system and components efficiency (constant speed control)

    图 14  两种控制规律下螺旋桨效率特性对比

    Figure 14.  Comparison of propeller efficiency characteristic under two control laws

    图 15  两种控制规律下电动机效率特性对比

    Figure 15.  Comparison of motor efficiency characteristic under two control laws

    图 16  两种控制规律下电推进系统总效率特性对比

    Figure 16.  Comparison of electric propulsion system efficiency characteristic under two control laws

    图 17  两种控制规律下电推进系统消耗功率对比

    Figure 17.  Comparison of electric propulsion system power under two control laws

    表  1  电推进飞机的关键参数

    Table  1.   Key parameters of electrically aircraft

    参数数值
    机翼面积/m226.0
    翼载/(kg/m2151.4
    质量/kg3937.0
    展弦比9.35
    诱导阻力系数0.85
    寄生阻力系数0.035
    最大升阻比13.4
    最大升力系数4.52
    下载: 导出CSV
  • [1] 杨凤田,范振伟,项松,等. 中国电动飞机技术创新与实践[J]. 航空学报,2021,42(3): 7-12.

    YANG Fengtian,FAN Zhenwei,XIANG Song,et al. Technical innovation and practice of electric aircraft in China[J]. Acta Aeronautica et Astronautica Sinica,2021,42(3): 7-12. (in Chinese)
    [2] 匡宇,张邦楚,姜鹏,等. 国外全电动飞机的研究现状与发展趋势[J]. 飞航导弹,2021(3): 93-98.

    KUANG Yu,ZHANG Bangchu,JIANG Peng,et al. Research status and development trend of foreign all-electric aircraft[J]. Aerodynamic Missile Journal,2021(3): 93-98. (in Chinese)
    [3] GOHARDANI A S,DOULGERIS G,SINGH R. Challenges of future aircraft propulsion: a review of distributed propulsion technology and its potential application for the all-electric commercial aircraft[J]. Progress in Aerospace Science,2011,47(5): 369-391. doi: 10.1016/j.paerosci.2010.09.001
    [4] 汤匀,岳芳,郭楷模,等. 全固态锂电池技术发展趋势与创新能力分析[J]. 储能科学与技术,2022,11(1): 359-369.

    TANG Yun,YUE Fang,GUO Kaimo,et al. Analysis of the development trend and the innovation ability of an all-solid-state lithium battery technology[J]. Energy Storage Science and Technology,2022,11(1): 359-369. (in Chinese)
    [5] 黄俊,杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报,2016,37(1): 57-68.

    HUANG Jun,YANG Fengtian. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica,2016,37(1): 57-68. (in Chinese)
    [6] 王书礼,孙金博,康桂文,等. 一种电动飞机电推进系统的能效优化方法[J]. 航空学报,2021,42(3): 53-61.

    WANG Shuli,SUN Jinbo,KANG Guiwen,et al. Energy efficiency optimization method for electric aircraft propulsion system[J]. Acta Aeronautica et Astronautica Sinica,2021,42(3): 53-61. (in Chinese)
    [7] 李延平. 太阳能/氢能混合动力小型无人机总体设计[D]. 北京: 北京理工大学, 2014.

    LI Yanping. Conceptual design for solar/hydrogen hybridpowered small-scale UAV[D]. Beijing: Beijing Institute of Technology, 2014. (in Chinese)
    [8] 刘福佳,杨凤田,刘远强,等. 电动轻型飞机电推进系统选型与参数匹配[J]. 南京航空航天大学学报,2019,51(3): 350-356.

    LIU Fujia,YANG Fengtian,LIU Yuanqiang,et al. Type selection and parameter matching of electric light aircraft propulsion system[J]. Journal of Nanjing University of Aeronautics and Astronautics,2019,51(3): 350-356. (in Chinese)
    [9] 王森. 无人机主推进高力能密度永磁电动机关键技术研究[D]. 沈阳: 沈阳工业大学, 2014.

    WANG Sen. The key technology research on main propulsion high energy density permanent magnet motor of unmanned aerial vehicle[D]. Shenyang: Shenyang University of Technology, 2014. (in Chinese)
    [10] MCDONALD R A. Modeling of electric motor driven propellers for conceptual aircraft design[R]. Kissimmee, US: 53rd AIAA Aerospace Sciences Meeting, 2015.
    [11] MCDONALD R A. Optimal propeller pitch scheduling and propeller-airframe matching for conceptual design[R]. Dallas, US: 15th AIAA Aviation Technology, Integration, and Operations Conference, 2015.
    [12] MCDONALD R A. Modeling of electric motor driven variable pitch propeller for conceptual aircraft design[R]. San Diego, US: 54th AIAA Aerospace Sciences Meeting, 2016.
    [13] CYRIL D T. Methods for collaborative conceptual design of aircraft power architectures[D]. Atlanta, US: Georgia Institute of Technology, 2010.
    [14] STOIA T R, ATREYA S, O’NEIL P, et al. A highly efficient solid oxide fuel cell power system for an all-electric commuter airplane flight demonstrator[R]. San Diego, US: 54th AIAA Aerospace Sciences Meeting, 2016.
    [15] 胡冶. 螺旋桨气动特性及螺旋桨滑流的CFD模拟研究[D]. 南京: 南京航空航天大学, 2012.

    HU Ye. CFD simulation of propeller performance and the influence of slipstream flow[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
    [16] MCDONALD R A. Electric motor modeling for conceptual aircraft design[R]. Grapevine, US: 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013.
    [17] MCDONALD R A. Electric propulsion modeling for conceptual aircraft design[R]. National Harbor, US: 52nd Aerospace Sciences Meeting, 2014.
    [18] LARMINIE J, LOWRY J. Electric vehicle technology explained[M]. Hoboken, US: John Wiley and Sons, 2012.
    [19] 马成宇,何国毅,王琦. 高空长航时无人机螺旋桨后掠桨叶气动研究[J]. 空气动力学学报,2019,37(5): 795-803.

    MA Chengyu,HE Guoyi,WANG Qi. Aerodynamic performance study on backswept blade of HALE UAV propeller[J]. Acta Aerodynamica Sinica,2019,37(5): 795-803. (in Chinese)
    [20] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社, 2006.
    [21] CHANDRA T. Developing stochastic model of thrust and flight dynamics for small UAVs[D]. Minneapolis and St. Paul, US: University of Minnesota, 2013.
    [22] BOBER L, MITCHELL G. Summary of advanced methods for predicting high speed propeller performance[R]. Pasadena, US: 18th Aerospace Sciences Meeting, 1980.
    [23] 严成忠. 开式转子发动机[M]. 北京: 航空工业出版社, 2016.
    [24] 段登燕,裴家涛,祖瑞,等. 电机-变距螺旋桨动力系统功率优化控制[J]. 航空学报,2021,42(3): 80-91.

    DUAN Dengyan,PEI Jiatao,ZU Rui,et al. Power optimization and control of motor variable-pitch propeller propulsion system[J]. Acta Aeronautica et Astronautica Sinica,2021,42(3): 80-91. (in Chinese)
    [25] WOROBEL R, MAYO M G. Advanced general aviation propeller study[R]. NASA CR 114399, 1971.
    [26] HAMILTON Standard Division of United Aircraft Corporation. Generalized method of propeller performance estimation 1961—1963[R]. Windsor Locks, US: HAMILTON Standard Division of United Aircraft Corporation, 1963.
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  220
  • HTML浏览量:  71
  • PDF量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 网络出版日期:  2023-02-07

目录

    /

    返回文章
    返回