留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机热端部件磷光测温技术研究进展

刘剑宇 全永凯 徐国强 柴杰明 殷秋洋 柳纪琛

刘剑宇, 全永凯, 徐国强, 等. 航空发动机热端部件磷光测温技术研究进展[J]. 航空动力学报, 2023, 38(12):2861-2871 doi: 10.13224/j.cnki.jasp.20220968
引用本文: 刘剑宇, 全永凯, 徐国强, 等. 航空发动机热端部件磷光测温技术研究进展[J]. 航空动力学报, 2023, 38(12):2861-2871 doi: 10.13224/j.cnki.jasp.20220968
LIU Jianyu, QUAN Yongkai, XU Guoqiang, et al. Research progress on phosphor thermometry technology for aero-engine hot section component[J]. Journal of Aerospace Power, 2023, 38(12):2861-2871 doi: 10.13224/j.cnki.jasp.20220968
Citation: LIU Jianyu, QUAN Yongkai, XU Guoqiang, et al. Research progress on phosphor thermometry technology for aero-engine hot section component[J]. Journal of Aerospace Power, 2023, 38(12):2861-2871 doi: 10.13224/j.cnki.jasp.20220968

航空发动机热端部件磷光测温技术研究进展

doi: 10.13224/j.cnki.jasp.20220968
详细信息
    作者简介:

    刘剑宇(1995-),男,博士生,主要从事航空发动机先进测试技术研究。E-mail:BY1904071@buaa.edu.cn

    通讯作者:

    全永凯(1983-),男,研究员、博士生导师,博士,主要从事航空发动机先进测试、旋转换热研究。E-mail:quanyongkai@buaa.edu.cn

  • 中图分类号: V216.5

Research progress on phosphor thermometry technology for aero-engine hot section component

  • 摘要:

    详细介绍了磷光测温技术的物理机制、测量方法、常用材料及制备工艺,并从磷光材料及其制备工艺、温度测试方法及系统、发动机环境下信号传输方案三个层面梳理了磷光测温技术在航空发动机热端部件表面温度测试领域的发展历程和研究动态。通过对航空发动机热端部件磷光测温技术研究进展的全面分析,充分验证了磷光测温技术与待测面发射率无关,受复杂燃气组分吸收散射影响小,可测量半透明介质内部温度场的独特优势,凸显了磷光测温技术在航空发动机极端环境下热端部件瞬态温度场测试中的应用潜力,有望实现更高的测温范围和测试精度,支撑新一代航空发动机的精细化设计。

     

  • 图 1  稀土离子发射磷光过程[5]

    Figure 1.  Phosphorescence emission process of rare earth ions[5]

    图 2  典型磷光材料的光谱[3]

    Figure 2.  Spectra of typical phosphorescent materials[3]

    图 3  磷光测温示意图[4]

    Figure 3.  Schematic diagram of phosphor thermometry[4]

    图 4  典型磷光材料寿命衰变时间常数标定曲线[7]

    Figure 4.  Calibration curves of lifetime decay for typical phosphorescent materials[7]

    图 5  热耦合能级示意图

    Figure 5.  Schematic of thermal coupled levels

    图 6  YAG: Dy涂层455 nm和493 nm发射峰强度比标定曲线[12]

    Figure 6.  Calibration curve of intensity ratio of 455 nm and 493 nm emission peaks for YAG: Dy coating[12]

  • [1] CHILDS P R N,GREENWOOD J R,LONG C A. Review of temperature measurement[J]. Review of Scientific Instruments,2000,71(8): 2959-2978. doi: 10.1063/1.1305516
    [2] KIM M,KIM D,YEOM E. Measurement of three-dimensional flow structure and transient heat transfer on curved surface impinged by round jet[J]. International Journal of Heat and Mass Transfer,2020,161: 120279. doi: 10.1016/j.ijheatmasstransfer.2020.120279
    [3] FEIST J P. Development of phosphor thermometry for gas turbines[D]. London: University of London, 2001.
    [4] NIZKORODOV S A,SANDER S P,BROWN L R. Temperature and pressure dependence of high-resolution air-broadened absorption cross sections of NO2 (415–525 nm)[J]. The Journal of Physical Chemistry A,2004,108(22): 4864-4872. doi: 10.1021/jp049461n
    [5] 刘榛丽. “智能”热障涂层测温系统总体方案设计[D]. 北京: 北京航空航天大学, 2021.

    LIU Zhenli. “Intelligent” thermal barrier coating temperature measuring system overall scheme design[D]. Beijing: Beihang University, 2021. (in Chinese)
    [6] ALARURI S D,BREWINGTON A J,THOMAS M A,et al. High-temperature remote thermometry using laser-induced fluorescence decay lifetime measurements of Y/sub 2/O/sub 3/: Eu and YAG: Tb thermographic phosphors[J]. IEEE Transactions on Instrumentation and Measurement,1993,42(3): 735-739. doi: 10.1109/19.231599
    [7] ERASMUS L J B,TERBLANS J J,SWART H C. Development of an optical thermometry system for phosphor materials[J]. Vacuum,2018,155: 702-711. doi: 10.1016/j.vacuum.2018.06.070
    [8] FEIST J P, HEYES A L, CHOY K L, et al. Phosphor thermometry for high temperature gas turbine applications[C]//ICIASF 99.18th International Congress on Instrumentation in Aerospace Simulation Facilities. Piscataway, US: IEEE, 2002: 6/1-6/7.
    [9] FUYUTO T,KRONEMAYER H,LEWERICH B,et al. Temperature and species measurement in a quenching boundary layer on a flat-flame burner[J]. Experiments in Fluids,2010,49(4): 783-795. doi: 10.1007/s00348-010-0917-x
    [10] OMRANE A,OSSLER F,ALDÉN M. Two-dimensional surface temperature measurements of burning materials[J]. Proceedings of the Combustion Institute,2002,29(2): 2653-2659. doi: 10.1016/S1540-7489(02)80323-6
    [11] KHALID A H,KONTIS K. 2D surface thermal imaging using rise-time analysis from laser-induced luminescence phosphor thermometry[J]. Measurement Science and Technology,2009,20(2): 025305. doi: 10.1088/0957-0233/20/2/025305
    [12] ALLISON S W,GILLIES G T. Remote thermometry with thermographic phosphors: instrumentation and applications[J]. Review of Scientific Instruments,1997,68(7): 2615-2650. doi: 10.1063/1.1148174
    [13] BRÜBACH J,PFLITSCH C,DREIZLER A,et al. On surface temperature measurements with thermographic phosphors: a review[J]. Progress in Energy and Combustion Science,2013,39(1): 37-60. doi: 10.1016/j.pecs.2012.06.001
    [14] OMRANE A,JUHLIN G,OSSLER F,et al. Temperature measurements of single droplets by use of laser-induced phosphorescence[J]. Applied Optics,2004,43(17): 3523-3529. doi: 10.1364/AO.43.003523
    [15] ISHIWADA N,FUJII E,YOKOMORI T. Evaluation of Dy-doped phosphors (YAG: Dy, Al2O3: Dy, and Y2SiO5: Dy) as thermographic phosphors[J]. Journal of Luminescence,2018,196: 492-497. doi: 10.1016/j.jlumin.2017.11.045
    [16] ECKERT C,PFLITSCH C,ATAKAN B. Sol-gel deposition of multiply doped thermographic phosphor coatings Al2O3: (Cr3+, M3+) (M = Dy, Tm) for wide range surface temperature measurement application[J]. Progress in Organic Coatings,2010,68(1/2): 126-129.
    [17] SUN Ze,ZHU Shigen,DONG Weiwei,et al. Characteristic comparison of stacked WC-based coatings prepared by high-velocity oxygen-fuel spray and electric contact strengthening[J]. Surface and Coatings Technology,2021,421: 127289. doi: 10.1016/j.surfcoat.2021.127289
    [18] ALI R,HUANG Taihong,SONG Peng,et al. Tribological performance and phase transition of MAX-phase/YSZ abradable seal coating produced by air plasma spraying[J]. Ceramics International,2022,48(3): 4188-4199. doi: 10.1016/j.ceramint.2021.10.210
    [19] ZHEN Zhen,WANG Xin,SHEN Zaoyu,et al. Thermal cycling behavior of EB-PVD rare earth oxides co-doping ZrO2-based thermal barrier coatings[J]. Ceramics International,2021,47(16): 23101-23109. doi: 10.1016/j.ceramint.2021.05.023
    [20] PAUL N. Device for indicating the temperature distribution of hot bodies: US2071471[P]. 1937-02-23.
    [21] NOEL B W, CATES M R, ALLISON S W, et al. Proposed method for remote thermometry in turbine engines[R]. New York: 21st Joint Propulsion Conference, 1985.
    [22] NOEL B W, BIBBY M, BORELLA H, et al. Environ-mental tests of thermographic phosphors for turbine-engine temperature measurements[R]. Monterey: 25th Joint Propulsion Conference, 1989.
    [23] TOBIN K W,ALLISON S W,GATES M R,et al. High-temperature phosphor thermometry of rotating turbine blades[J]. AIAA Journal,1990,28(8): 1485-1490. doi: 10.2514/3.25242
    [24] CHOY K L, HEYES A L, FEIST J. Thermal barrier coating with thermoluminescent indicator material embedded therein: US6974641[P]. 2005-12-13.
    [25] FEIST J P, HEYES A L, NICHOLLS J R. Phosphor thermometry in an electron beam physical vapour deposition produced thermal barrier coating doped with dysprosium[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2001, 215(6): 333-341.
    [26] FEIST J P, SOLLAZZO P Y, BERTHIER S, et al. Precision temperature detection using a phosphorescence sensor coating system on a rolls-royce viper engine[R]. ASME Paper GT2012-69779, 2012.
    [27] PENG Di,YANG Lixia,CAI Tao,et al. Phosphor-doped thermal barrier coatings deposited by air plasma spray for in-depth temperature sensing[J]. Sensors,2016,16(10): 1490. doi: 10.3390/s16101490
    [28] JENKINS T P, ELDRIDGE J I, ALLISON S W, et al. Progress toward luminescence-based VAATE turbine blade and vane temperature measurement[C]//AIP Conference Proceedings. Los Angeles, US: American Institute of Physics, 2013: 903-908.
    [29] ELDRIDGE J I,ALLISON S W,JENKINS T P,et al. Surface temperature measurements from a stator vane doublet in a turbine afterburner flame using a YAG: Tm thermographic phosphor[J]. Measurement Science and Technology,2016,27(12): 125205. doi: 10.1088/0957-0233/27/12/125205
    [30] ALLISON S W, BESHEARS D L, GADFORT T, et al. High temperature surface measurements using lifetime imaging of thermographic phosphors: bonding tests[C]//ICIASF 2001 Record, 19th International Congress on Instrumentation in Aerospace Simulation Facilities. Piscataway, US: IEEE, 2002: 171-176.
    [31] ALLISON S W,BESHEARS D L,CATES M R,et al. Luminescence of YAG: Dy and YAG: Dy, Er crystals to 1 700 ℃[J]. Measurement Science and Technology,2020,31(4): 044001. doi: 10.1088/1361-6501/ab4ebd
    [32] CHEPYGA L M,OSVET A,BRABEC C J,et al. High-temperature thermographic phosphor mixture YAP/YAG: Dy3+ and its photoluminescence properties[J]. Journal of Luminescence,2017,188: 582-588. doi: 10.1016/j.jlumin.2017.04.070
    [33] NOEL B W, CATES M R, ALLISON S W, et al. A proposed method for remote thermometry in turbine engines[R]. Monterey, Canada: 21st Joint Propulsion Conference, 1985.
    [34] GENTLEMAN M M,ELDRIDGE J I,ZHU D M,et al. Non-contact sensing of TBC/BC interface temperature in a thermal gradient[J]. Surface and Coatings Technology,2006,201(7): 3937-3941. doi: 10.1016/j.surfcoat.2006.08.102
    [35] ALDÉN M,OMRANE A,RICHTER M,et al. Thermographic phosphors for thermometry: a survey of combustion applications[J]. Progress in Energy and Combustion Science,2011,37(4): 422-461. doi: 10.1016/j.pecs.2010.07.001
    [36] ALI A,CHEPYGA L M,KHANZADA L S,et al. Novel two-dimensional phosphor thermography by decay-time method using a low frame-rate CMOS camera[J]. Optics and Lasers in Engineering,2020,128: 106010. doi: 10.1016/j.optlaseng.2020.106010
    [37] CATES M R,ALLISON S W,JAISWAL S L,et al. YAG: Dy and YAG: Tm fluorescence to 1 700 ℃[J]. Proceedings of the International Instrumentation Symposium,2003,49: 389-400.
    [38] 王晟,胡志云,邵珺,等. 双色热敏磷光涂层测温技术[J]. 红外与激光工程,2014,43(5): 1406-1410.

    WANG Sheng,HU Zhiyun,SHAO Jun,et al. Two-color thermally sensitive phosphor coatings for temperature measurement[J]. Infrared and Laser Engineering,2014,43(5): 1406-1410. (in Chinese)
    [39] 李飞. 基于热猝灭和热耦合能级的温度探测技术[D]. 合肥: 中国科学技术大学, 2017.

    LI Fei. The temperature detection technology based on thermal quenching and thermal coupling energy levels[D]. Hefei: University of Science and Technology of China, 2017. (in Chinese)
    [40] 李嘉伟. 非接触式磷光测温系统信号处理方案设计[D]. 北京: 北京航空航天大学, 2022.

    LI Jiawei. Design of signal processing scheme for non-contact phosphor thermometry system[D]. Beijing: Beihang University, 2021. (in Chinese)
    [41] ALARURI S,MCFARLAND D,BREWINGTON A,et al. Development of a fiber-optic probe for thermographic phosphor measurements in turbine engines[J]. Optics and Lasers in Engineering,1995,22(1): 17-31. doi: 10.1016/0143-8166(94)00015-3
    [42] JENKINS T P,HESS C F,ALLISON S W,et al. Measurements of turbine blade temperature in an operating aero engine using thermographic phosphors[J]. Measurement Science and Technology,2020,31(4): 044003. doi: 10.1088/1361-6501/ab4c20
    [43] NOEL B W,BORELLA H M,LEWIS W,et al. Evaluating thermographic phosphors in an operating turbine engine[J]. Journal of Engineering for Gas Turbines and Power,1991,113(2): 242-245. doi: 10.1115/1.2906554
  • 加载中
图(6)
计量
  • 文章访问数:  46
  • HTML浏览量:  27
  • PDF量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-20
  • 网络出版日期:  2023-09-27

目录

    /

    返回文章
    返回