Sound insulation performance of laminates based on the equivalent method and FE-BEM
-
摘要:
以对称层合板结构为对象,基于经典层合板理论,将其等效为单层各项异性板,采用FE-BEM法(hybrid finite element-boundary element method)分析了其在宽频噪声激励作用下的隔声特性。为验证等效方法的适用性,开展对称复合材料层合板模态测试和数值分析;为验证预估结论的正确性,将FE-BEM法结果与FE-SEA法(hybrid finite element-statistic energy analysis)结果、试验结果分别进行对比。结果表明:将等效方法用于对称层合板固有特性模拟是正确的,等效层合板的固有特性的仿真结果与试验值一致,误差在6.9%以内;等效方法和FE-BEM法结合进行对称层合板隔声预计是有效的,FE-BEM法预计结果与试验结果吻合良好;等效方法和FE-SEA法结合进行对称层合板隔声预计也是有效的,FE-BEM法比FE-SEA法所建模型计算耗时长,算例中计算耗时增大4.4%。
Abstract:The sound insulation performance of symmetric laminate structure was estimated and verified by experiments. Based on the classical laminate theory, the symmetric laminate structure was equivalent to a single anisotropic plate, and its sound insulation characteristics under broadband noise excitation were analyzed by the FE-BEM (hybrid finite element-boundary element method). In order to verify the applicability of the equivalent method, modal experiments and numerical analyses of symmetric composite laminates were carried out. To verify the correctness of the predicted conclusions, FE-BEM results were compared with FE-SEA (hybrid finite element-statistic energy analysis) results and experimental results. The results showed that the equivalent method can correctly simulate the natural characteristics of symmetrical laminates, the simulation results were consistent with the experimental results and the corresponding error was 6.9%. The equivalent method combined with the FE-BEM was effective for sound insulation prediction of symmetric laminates, and the predicted results of the FE-BEM agreed well with the experimental results. The equivalent method combined with the FE-SEA method was effective for sound insulation prediction of symmetric laminates, the calculation time of FE-BEM model was more than FE-SEA model, and the calculation time increased by 4.4%.
-
Key words:
- FE-BEM /
- sound insulation performance /
- composite /
- broadband noise excitation /
- laminates
-
表 1 层合板材料力学参数
Table 1. mechanical parameters of the laminate material
参数 数值 玻璃纤维 编织材料 黏接胶层 蜂窝芯层 $ {密度} / ({{\rm{kg}}/{{\rm{m}}^3}}) $ 1608 1290 998 33 $ {厚度}/{\rm{mm}} $ 0.11 0.186 0.25 9.49 $ {{{E_{11}}} /{{\rm{GPa}}}} $ 16.19 27.55 1.67 0.001 $ {{{E_{22}}} / {{\rm{GP}}{\rm{a}}}} $ 16.19 27.55 1.67 0.001 $ {{{G_{21}}} /{{\rm{MP}}{\rm{a}}}} $ 2755 2000 600 13 $ {{{G_{12}}} / {{\rm{MP}}{\rm{a}}}} $ 2755 2000 600 23 泊松比 0.15 0.09 0.4 0.01 表 2 层合板固有频率
Table 2. Natural frequencies of the laminated plate
阶次 数值解/Hz 试验值/Hz 误差/% (1,1) 89.80 84 6.90 (2,1) 159.28 162 1.68 (1,2) 192.45 191 0.76 (2,2) 241.61 253 4.50 (1,3) 327.62 336 2.50 (4,3) 565.80 595 4.91 (5,2) 670.11 643 4.22 (5,3) 715.25 726 1.48 (6,2) 836.79 800 4.60 (6,3) 874.83 869 0.67 表 3 试验与数值计算振型结果对比
Table 3. Comparison of modal shapes between experimental results and numerical calculation results
阶次 测试结果 数值结果 (1,1) (2,1) (2,2) 表 4 数值计算时间
Table 4. Numerical calculation time
数值方法 计算耗时/s FE-SEA 172801 FE-BEM 180321 -
[1] MIXSON J S,WILBY J F. Interior noise[EB/OL].[2023-01-07]. https://ntrs.nasa.gov/citations/19920005567. [2] BHAT W V. Flight test measurement of exterior turbulent boundary layer pressure fluctuations on Boeing model 737 airplane[J]. Journal of Sound and Vibration,1971,14(4): 439-457. doi: 10.1016/0022-460X(71)90574-8 [3] 左孔成,陈鹏,王政,等. 飞机舱内噪声的研究现状[J]. 航空学报,2016,37(8): 2370-2384. ZUO Kongcheng,CHEN Peng,WANG Zheng,et al. Research status of aircraft interior noise[J]. Acta Aeronautica et Astronautica Sinica,2016,37(8): 2370-2384. (in Chinese ZUO Kongcheng, CHEN Peng, WANG Zheng, et al . Research status of aircraft interior noise[J]. Acta Aeronautica et Astronautica Sinica,2016 ,37 (8 ):2370 -2384 . (in Chinese)[4] 张桥,吴远飞. 直升机复合材料波纹梁吸能特性试验研究与仿真分析[J]. 直升机技术,2016(3): 36-39,62. ZHANG Qiao,WU Yuanfei. Experimental investigation and simulation of the energy absorption characteristics of helicopter composite sine beams[J]. Helicopter Technique,2016(3): 36-39,62. (in Chinese ZHANG Qiao, WU Yuanfei . Experimental investigation and simulation of the energy absorption characteristics of helicopter composite sine beams[J]. Helicopter Technique,2016 (3 ):36 -39, 62 . (in Chinese)[5] 袁杰,王文山. 复合材料在商用发动机作动系统中的应用分析[J]. 航空发动机,2017,43(3): 98-102. YUAN Jie,WANG Wenshan. Application and analysis of composite materials in actuation system for commercial aircraft engine[J]. Aeroengine,2017,43(3): 98-102. (in Chinese YUAN Jie, WANG Wenshan . Application and analysis of composite materials in actuation system for commercial aircraft engine[J]. Aeroengine,2017 ,43 (3 ):98 -102 . (in Chinese)[6] 姚德源,王其政. 统计能量分析原理及其应用[M]. 北京: 北京理工大学出版社,1995. [7] 李彦斌,张鹏,吴邵庆,等. 复合材料加筋板计及热效应的声-固耦合分析[J]. 振动工程学报,2015,28(4): 531-540. LI Yanbin,ZHANG Peng,WU Shaoqing,et al. Structural-acoustic coupling analysis of a composite stiffened panel in a thermal environment[J]. Journal of Vibration Engineering,2015,28(4): 531-540. (in Chinese LI Yanbin, ZHANG Peng, WU Shaoqing, et al . Structural-acoustic coupling analysis of a composite stiffened panel in a thermal environment[J]. Journal of Vibration Engineering,2015 ,28 (4 ):531 -540 . (in Chinese)[8] 廖涛,李彦斌,吴邵庆,等. 噪声激励下典型复合材料铆接结构的声固耦合分析[J]. 固体火箭技术,2017,40(2): 214-220. LIAO Tao,LI Yanbin,WU Shaoqing,et al. Structure-acoustic coupling analysis of a typical composite jointed structure under noise excitation[J]. Journal of Solid Rocket Technology,2017,40(2): 214-220. (in Chinese LIAO Tao, LI Yanbin, WU Shaoqing, et al . Structure-acoustic coupling analysis of a typical composite jointed structure under noise excitation[J]. Journal of Solid Rocket Technology,2017 ,40 (2 ):214 -220 . (in Chinese)[9] SKUDRZYK E J. Vibrations of a system with a finite or an infinite number of resonances[J]. The Journal of the Acoustical Society of America,2005,30(12): 1140-1152. [10] HECKL M. Measurements of absorption coefficients on plates[J]. The Journal of the Acoustical Society of America,1962,34(6): 803-808. doi: 10.1121/1.1918199 [11] BOLOTIN V V. On the density of the distribution of natural frequencies of thin elastic shells[J]. Journal of Applied Mathematics and Mechanics,1963,27(2): 538-543. doi: 10.1016/0021-8928(63)90021-2 [12] UNGAR E E. Statistical energy analysis of vibrating systems[J]. Journal of Engineering for Industry,1967,89(4): 626-632. doi: 10.1115/1.3610123 [13] LYON R H,SCHARTON T D. Vibrational-energy transmission in a three-element structure[J]. The Journal of the Acoustical Society of America,1965,38(2): 253-261. doi: 10.1121/1.1909649 [14] 廖青,黑晓涛,侯炳坤,等. 船式拖拉机驾驶室低频噪声研究[J/OL]. [2023-05-31]. https://kns.cnki.net/kcms/detail/32.1837.S.20230530.1617.002.html. LIAO Qing,HEI Xiaotao,HOU Bingkun,et al. Research on low frequency noise of ship tractor cab[J/OL]. [2023-05-31]. https://kns.cnki.net/kcms/detail/32.1837.S.20230530.1617.002.html. (in ChineseLIAO Qing, HEI Xiaotao, HOU Bingkun, et al. Research on low frequency noise of ship tractor cab[J/OL]. [2023-05-31]. https://kns.cnki.net/kcms/detail/32.1837.S.20230530.1617.002.html. (in Chinese) [15] 李孔娟,陈海波. 加筋板中频声振疲劳分析方法研究[J]. 空天技术,2023(2): 75-83,96. LI Kongjuan,CHEN Haibo. A mid-frequency vibro-acoustic fatigue analysis method for stiffened panels[J]. Aerospace Technology,2023(2): 75-83,96. (in Chinese LI Kongjuan, CHEN Haibo . A mid-frequency vibro-acoustic fatigue analysis method for stiffened panels[J]. Aerospace Technology,2023 (2 ):75 -83, 96 . (in Chinese)[16] 彭涛,韩鹏程,刘兴强,等. 基于混合FE-SEA方法的加筋板宽频隔声预计[J]. 装备环境工程,2022,19(9): 32-38. PENG Tao,HAN Pengcheng,LIU Xingqiang,et al. Prediction of broadband sound insulation of stiffened panels based on hybrid FE-SEA method[J]. Equipment Environmental Engineering,2022,19(9): 32-38. (in Chinese PENG Tao, HAN Pengcheng, LIU Xingqiang, et al . Prediction of broadband sound insulation of stiffened panels based on hybrid FE-SEA method[J]. Equipment Environmental Engineering,2022 ,19 (9 ):32 -38 . (in Chinese)[17] LANGLEY R S,BREMNER P. A hybrid method for the vibration analysis of complex structural-acoustic systems[J]. The Journal of the Acoustical Society of America,1999,105(3): 1657-1671. doi: 10.1121/1.426705 [18] LANGLEY R S,SMITH J R D,BREMNER P G. A hybrid FEA/SEA technique for the analysis of complex systems: application to plate and beam structures[J]. The Journal of the Acoustical Society of America,1999,106(4): 2117. [19] 张捷,肖新标,王瑞乾,等. 高速列车铝型材声振特性测试及等效建模[J]. 浙江大学学报(工学版),2017,51(3): 545-553. ZHANG Jie,XIAO Xinbiao,WANG Ruiqian,et al. Vibro-acoustic characteristics measurement and equivalent modeling of aluminum extrusion of high-speed trains[J]. Journal of Zhejiang University (Engineering Science),2017,51(3): 545-553. (in Chinese ZHANG Jie, XIAO Xinbiao, WANG Ruiqian, et al . Vibro-acoustic characteristics measurement and equivalent modeling of aluminum extrusion of high-speed trains[J]. Journal of Zhejiang University (Engineering Science),2017 ,51 (3 ):545 -553 . (in Chinese)[20] JARNG S S. Comparison of barrel-stave sonar transducer simulations between a coupled FE-BEM and ATILA[J]. IEEE Sensors Journal,2003,3(4): 439-446. doi: 10.1109/JSEN.2003.815846 [21] 刘潇,张楠,孙琪凯. 高速铁路钢-混结合箱梁桥车致振动与结构噪声预测分析与试验验证[J]. 土木工程学报,2023,56(4): 41-50. LIU Xiao,ZHANG Nan,SUN Qikai. Prediction analysis and experimental validation of vehicle induced vibration and structure-borne noise of steel-concrete composite box girder of the high-ispeed railway[J]. China Civil Engineering Journal,2023,56(4): 41-50. (in Chinese LIU Xiao, ZHANG Nan, SUN Qikai . Prediction analysis and experimental validation of vehicle induced vibration and structure-borne noise of steel-concrete composite box girder of the high-ispeed railway[J]. China Civil Engineering Journal,2023 ,56 (4 ):41 -50 . (in Chinese)[22] 武多听,陈锋,耿厚才,等. 螺旋桨激励力作用下舰船振动及水下声辐射特性研究[J]. 噪声与振动控制,2020,40(3): 164-169. WU Duoting,CHEN Feng,GENG Houcai,et al. Research on the ship vibration and underwater acoustic radiation characteristics under propeller excitation[J]. Noise and Vibration Control,2020,40(3): 164-169. (in Chinese WU Duoting, CHEN Feng, GENG Houcai, et al . Research on the ship vibration and underwater acoustic radiation characteristics under propeller excitation[J]. Noise and Vibration Control,2020 ,40 (3 ):164 -169 . (in Chinese)[23] 沈关林,胡更开. 复合材料力学[M]. 北京: 清华大学出版社. SHEN Guanlin,HU Gengkai. Composite mechanics[M]. Beijing: Tsinghua University Press,2006. (in ChineseSHEN Guanlin, HU Gengkai. Composite mechanics[M]. Beijing: Tsinghua University Press, 2006. (in Chinese) [24] 江彬彬. 复合材料厚层合板等效及优化方法研究[D]. 南京: 南京航空航天大学,2017. JIANG Binbin. Research on equivalent and optimization approach for thick composite laminates[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2017. (in ChineseJIANG Binbin. Research on equivalent and optimization approach for thick composite laminates[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. (in Chinese) [25] 柳孝图,吴启学,毛建西,等. 声学-建筑和建筑构件隔声测量: 第4部分 房间之间空气声隔声的现场测量: GB/T 19889.4-2005[S]. 北京: 中国标准出版社,2005: 1-11. LIU Xiaotu,WU Qixue,MAO Jianxi,et al. Acoustics-measurement of sound insulation in buildings and of building elements: Part 4 field measurements of airborne sound insulation between rooms: GB/T 19889.4-2005[S]. Beijing: Standards Press of China,2005: 1-11 (in ChineseLIU Xiaotu, WU Qixue, MAO Jianxi, et al. Acoustics-measurement of sound insulation in buildings and of building elements: Part 4 field measurements of airborne sound insulation between rooms: GB/T 19889.4-2005[S]. Beijing: Standards Press of China, 2005: 1-11 (in Chinese) [26] ISO/TC 43/SC 2. Acoustics-field measurement of sound insulation in buildings and of building elements: Part 1 irborne sound insulation: ISO 16283-1: 2014[S]. Geneva, Switzerland: International Organization for Standardization,2014: 1-43. -