留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超燃冲压发动机燃烧室的燃烧特性

李俊红 潘宏禄 沈清 程晓丽

李俊红, 潘宏禄, 沈清, 程晓丽. 超燃冲压发动机燃烧室的燃烧特性[J]. 航空动力学报, 2014, 29(1): 14-22. doi: 10.13224/j.cnki.jasp.2014.01.003
引用本文: 李俊红, 潘宏禄, 沈清, 程晓丽. 超燃冲压发动机燃烧室的燃烧特性[J]. 航空动力学报, 2014, 29(1): 14-22. doi: 10.13224/j.cnki.jasp.2014.01.003
LI Jun-hong, PAN Hong-lu, SHEN Qing, CHENG Xiao-li. Combustion characteristics of scramjet combustor[J]. Journal of Aerospace Power, 2014, 29(1): 14-22. doi: 10.13224/j.cnki.jasp.2014.01.003
Citation: LI Jun-hong, PAN Hong-lu, SHEN Qing, CHENG Xiao-li. Combustion characteristics of scramjet combustor[J]. Journal of Aerospace Power, 2014, 29(1): 14-22. doi: 10.13224/j.cnki.jasp.2014.01.003

超燃冲压发动机燃烧室的燃烧特性

doi: 10.13224/j.cnki.jasp.2014.01.003

Combustion characteristics of scramjet combustor

  • 摘要: 以一种低内阻光滑通道煤油超燃冲压发动机燃烧室为应用背景,采用有限差分法对燃烧室超声速流场进行了数值模拟.对流项采用3阶WENO(weighted essentially non-oscillatory)格式,湍流模型为SST(shear stress transport) k-ω模型,煤油(C12H23)/空气反应模型采用单步化学动力学模型.将燃烧室中沿侧壁的壁面静压的计算结果与实验结果进行了对比,结果符合良好,说明该算法适用于煤油超燃燃烧室计算. 研究了燃烧室来流静温、燃料/空气当量比和射流位置对煤油超声速流动与燃烧的影响.计算结果表明:燃烧集中在安装喷嘴一侧的壁面边界层附近,点火位置对当地静温非常敏感.随着来流静温降低、燃料/空气当量比减小和燃烧室扩张角增大,燃烧效率降低,燃烧性能下降,点火位置逐渐向燃烧室出口移动,燃烧放热形成的激波串结构消失.在燃烧室上、下壁面交错布置燃料喷嘴有利于提高燃烧效率.基于此,初步获得了光滑通道燃烧室内煤油点火燃烧的临界条件.

     

  • [1] Weber R J, MacKay J S.An analysis of ramjet engines using supersonic combustion[R].NACA Tech Note 4386, 1958.
    [2] Bogdanoff D W.Advanced injection and mixing techniques for scramjet combustors[J].Journal of Propulsion and Power, 1994, 10(2):183-190.
    [3] John M S, Dash S M, Kenzakowsbi D C.Historical survey on enhanced mixing in scramjet engine[R][R].AIAA 99-4869, 1999.
    [4] Grueing C, Mahinger F.Supersonic combustion of kerosene/H2 mixture in a model scramjet combustor[J].Combustion Science and Technology, 1999, 146(1/2/3/4/5/6):1-22.
    [5] Yu G, Li J G, Chang X Y, et al.Investigation of kerosene combustion characteristics with pilot hydrogen in model supersonic combustors[J].Journal of Propulsion and Power, 2001, 17(6):1263-1272.
    [6] Rajasekaran A, Satishkumar G, Babu V.Numerical simulation of the supersonic combustion of kerosene in a model combustor[J].Progress in Computational Fluid Dynamics, 2009, 9(1):30-42.
    [7] 赵俊波, 沈清, 张红军, 等.基于T-S波谐频共振的超燃进气道边界层转捩[J].航空动力学报, 2010, 25(11):2420-2424. ZHAO Junbo, SHEN Qing, ZHANG Hongjun, et al.Boundary transition research of scramjet inlet based on the Tollmien-Sdhlichting (T-S) wave syntony[J].Journal of Aerospace Power, 2010, 25(11):2420-2424.(in Chinese)
    [8] 周松柏.超声速内外流干扰的数值方法研究及其实验验证与应用[D].长沙:国防科学技术大学, 2009. ZHOU Songbai.Research on numerical method, experimental verification and application in simulating jet interaction in supersonic external flow[D].Changsha:National University of Defense Technology, 2009.(in Chinese)
    [9] Gordon S, McBride B J.Computer program for calculation of complex chemical equilibrium compositions rocket performance, incident and reflected shocks, and Chapman Jouguet detonations[R].NASA SP-273, 1971.
    [10] Dufour E, Bouchez M.Computational analysis of a kerosene-fuelled scramjet[R][R].AIAA-2001-1817, 2001.
    [11] Menter F R.Improved two-equation k-ω turbulence model for aerodynamic flows[R].NASA TM-103975, 1992.
    [12] Menter F R.Zonal two equation k-ω turbulence models for aerodynamic flows[R][R].AIAA 93-2906, 1993.
    [13] Menter F R.Two-equation eddy-viscosity turbulence models for engineering applications[R].AIAA Journal, 1994, 32(8):1598-1605.
    [14] Möbus H, Gerlinger P, Brüggermann D.Scalar and joint scalar-velocity-frequency Monte Carlo PDF simulation of supersonic combustion[J].Combustion and Flame, 2003, 132(1):3-24.
    [15] Dehee K, Jand H K.A low dissipative and dispersive scheme with a high order WENO dissipation for unsteady flow analyses[R].AIAA-2004-2705, 2004.
  • 加载中
计量
  • 文章访问数:  1653
  • HTML浏览量:  5
  • PDF量:  1074
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-04
  • 刊出日期:  2014-01-28

目录

    /

    返回文章
    返回