留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于交叉射流与切向旋流的CH4柔和燃烧特性对比

黄明明 邵卫卫 张哲巅 熊燕 刘艳 雷福林 肖云汉

黄明明, 邵卫卫, 张哲巅, 熊燕, 刘艳, 雷福林, 肖云汉. 基于交叉射流与切向旋流的CH4柔和燃烧特性对比[J]. 航空动力学报, 2014, 29(1): 31-41. doi: 10.13224/j.cnki.jasp.2014.01.005
引用本文: 黄明明, 邵卫卫, 张哲巅, 熊燕, 刘艳, 雷福林, 肖云汉. 基于交叉射流与切向旋流的CH4柔和燃烧特性对比[J]. 航空动力学报, 2014, 29(1): 31-41. doi: 10.13224/j.cnki.jasp.2014.01.005
HUANG Ming-ming, SHAO Wei-wei, ZHANG Zhe-dian, XIONG Yan, LIU Yan, LEI Fu-lin, XIAO Yun-han. Comparison of CH4 moderate or intense low-oxygen dilution combustion characteristics based on cross-flow jet mixing and swirl mixing[J]. Journal of Aerospace Power, 2014, 29(1): 31-41. doi: 10.13224/j.cnki.jasp.2014.01.005
Citation: HUANG Ming-ming, SHAO Wei-wei, ZHANG Zhe-dian, XIONG Yan, LIU Yan, LEI Fu-lin, XIAO Yun-han. Comparison of CH4 moderate or intense low-oxygen dilution combustion characteristics based on cross-flow jet mixing and swirl mixing[J]. Journal of Aerospace Power, 2014, 29(1): 31-41. doi: 10.13224/j.cnki.jasp.2014.01.005

基于交叉射流与切向旋流的CH4柔和燃烧特性对比

doi: 10.13224/j.cnki.jasp.2014.01.005
基金项目: 国家自然科学基金(51006104,51206168)

Comparison of CH4 moderate or intense low-oxygen dilution combustion characteristics based on cross-flow jet mixing and swirl mixing

  • 摘要: 轴向分级柔和燃烧器中,采用了交叉射流、切向旋流两种掺混方式,通过实验结合数值计算的方法,从流场和组分分布角度比较了两种掺混方式的掺混特点,从火焰特征、NO/CO排放方面比较了燃烧性能.实验以甲烷为燃料,热功率为16.2~25.9kW,相对切向旋流,交叉射流延缓了燃料、空气的直接混合,燃料、空气燃烧前经回流烟气充分预热和稀释,火焰根部有抬升,反应区体积大,火焰特征更接近柔和燃烧.同时,交叉射流分级燃烧器的污染物排放性能更优,回流比例为0.5、当量比为0.6时,烟气中NO和CO体积分数均仅为4×10-6.

     

  • [1] Shy S S, Chen Y C, Yang C H, et al.Effects of H2 or CO2 addition, equivalence ratio, and turbulent straining on turbulent burning velocities for lean premixed methane combustion[J].Combustion and Flame, 2008, 153(4):510-524.
    [2] Solero G, Coghe A.Effect of injection typology on turbulent homogeneous mixing in a natural gas swirl burner[J].Experimental Thermal and Fluid Science, 2000, 21(4):162-170.
    [3] Davis L B, Black S H.Dry low NOx combustion systems for GE heavy-duty gas turbines.GE Power Systems, GER-3568G, 2010.
    [4] Benini E, Pandolfo S, Zoppellari S.Reduction of NO emissions in a turbojet combustor by direct water/steam injection numerical and experimental assessment[J].Applied Thermal Engineering, 2009, 29(17/18):3506-3510.
    [5] Hasegawa T, Mochida S, Gupta A K.Development of advanced industrial furnace using highly preheated combustion air[J].Journal of Propulsion and Power, 2002, 18(2):233-239.
    [6] Cavaliere A, Joannon M D.MILD combustion[J].Progress in Energy and Combustion Science, 2004, 30(4):329-366.
    [7] YU Yu, WANG Gaofeng, LIN Qizhao, et al.Flameless combustion for hydrogen containing fuels[J].International Journal of Hydrogen Energy, 2010, 35(7):2694-2697.
    [8] Wünning J G.Flameless oxidation to reduce thermal NO-formation[J].Progress in Energy Combustion Science, 1997, 23(1):81-94.
    [9] Szegö G G, Dally B B, Nathan G J.Operational characteristics of a parallel jet MILD combustion burner system[J].Combustion and Flame, 2009, 156(2):429-438.
    [10] Dally B B, Karpetis A N, Barlow R S.Structure of turbulent non-premixed jet flames in a diluted hot coflow[J].Proceedings of the Combustion Institute, 2002, 29(1):1147-1154.
    [11] 陈钦.燃气轮机燃烧室柔和燃烧条件与特征的研究[D].北京:中国科学院, 2010. CHEN Qin.Investigation of realization condition and characteristics of MILD combustion for gas turbine application[D].Beijing:Chinese Academy of Sciences, 2010.(in Chinese)
    [12] 黄明明, 张哲巅, 邵卫卫, 等.低排放分级燃烧器中CH4柔和燃烧特性[J].燃气轮机技术, 2013, 26(1):33-39. HUANG Mingming, ZHANG Zhedian, SHAO Weiwei, et al.Methane MILD combustion characteristic on axially-staged combustor[J].Gas Turbine Technology, 2013, 26(1):33-39.(in Chinese)
    [13] 黄明明, 邵卫卫, 刘艳, 等.交叉射流分级燃烧器中CH4柔和燃烧特性分析[J].中国电机工程学报, 2013, 33(8):22-29. HUANG Mingming, SHAO Weiwei, LIU Yan, et al.Investigation of methane MILD combustion characteristics in cross-flow jet mixing staged burners[J].Proceedings of the Chinese Society for Electrical Engineering, 2013, 33(8):22-29.(in Chinese)
    [14] Arghode V K, Gupta A K, Bryden K M.High intensity colorless distributed combustion for ultra low emissions and enhanced performance[J].Applied Energy, 2012, 92(4):822-830.
    [15] Khalil A E E, Gupta A K.Distributed swirl combustion for gas turbine application[J].Applied Energy, 2011, 88(12):4898-4907.
    [16] Arghode V K, Gupta A K.Investigation of reverse flow distributed combustion for gas turbine application[J].Applied Energy, 2011, 88(4):1096-1104.
    [17] Arghode V K, Gupta A K.Hydrogen addition effects on methane-air colorless distributed combustion flames[J].International Journal of Hydrogen Energy, 2011, 36(10):6292-6302.
    [18] Hill S C, Smoot L D.Modeling of nitrogen oxides formation and destruction in combustion systems[J].Progress in Energy and Combustion Science, 2000, 26(4/5/6):417-458.
    [19] Dandy D S, Vosen S R.Numerical and experimental studies of hydroxyl radical chemiluminescence in methane air flames[J].Combustion Science and Technology, 1992, 82(1/2/3/4/5/6):131-150.
    [20] Lefebvre A H.Gas turbine combustion[M].2nd ed.Ann Arbor, US:Edwards Brothers, 1998.
    [21] Arghode V K, Gupta A K.Effect of flow field for colorless distributed combustion(CDC) for gas turbine combustion[J].Applied Energy, 2010, 87(5):1631-1640.
    [22] Arghode V K, Gupta A K.Investigation of forward flow distributed combustion for gas turbine application[J].Applied Energy, 2011, 88(1):29-40.
    [23] Gupta A K, Bolz S, Hasegawa T.Effect of air preheat temperature and oxygen concentration on flame structure and emission[J].Journal of Energy Resources Technology, 1999, 121(3):209-216.
    [24] Correa S M.A review of NOx formation under gas-turbine combustion conditions[J].Combustion Science and Technology, 1992, 87(1/2/3/4/5/6):329-362.
    [25] 姚强, 李永清, 王宇.燃烧学导论[M].北京:清华大学出版社, 2009.
    [26] Kuo K K.Principles of combustion[M].2nd ed.New York:John Wiley and Sons, 2005.
  • 加载中
计量
  • 文章访问数:  1781
  • HTML浏览量:  2
  • PDF量:  1023
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-27
  • 刊出日期:  2014-01-28

目录

    /

    返回文章
    返回