留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡轮叶片尾缘内冷通道旋流冷却特性

徐虹艳 张靖周 谭晓茗

徐虹艳, 张靖周, 谭晓茗. 涡轮叶片尾缘内冷通道旋流冷却特性[J]. 航空动力学报, 2014, 29(1): 59-66. doi: 10.13224/j.cnki.jasp.2014.01.008
引用本文: 徐虹艳, 张靖周, 谭晓茗. 涡轮叶片尾缘内冷通道旋流冷却特性[J]. 航空动力学报, 2014, 29(1): 59-66. doi: 10.13224/j.cnki.jasp.2014.01.008
XU Hong-yan, ZHANG Jing-zhou, TAN Xiao-ming. Vortex cooling performance in internal cooling channel of turbine blade trailing edge[J]. Journal of Aerospace Power, 2014, 29(1): 59-66. doi: 10.13224/j.cnki.jasp.2014.01.008
Citation: XU Hong-yan, ZHANG Jing-zhou, TAN Xiao-ming. Vortex cooling performance in internal cooling channel of turbine blade trailing edge[J]. Journal of Aerospace Power, 2014, 29(1): 59-66. doi: 10.13224/j.cnki.jasp.2014.01.008

涡轮叶片尾缘内冷通道旋流冷却特性

doi: 10.13224/j.cnki.jasp.2014.01.008
基金项目: 国家自然科学基金(51106073);江苏省自然科学基金(BK20130790)

Vortex cooling performance in internal cooling channel of turbine blade trailing edge

  • 摘要: 针对简化的叶片尾缘,设计了3种旋流冷却结构,即冷气分别从旋流腔中部射流孔、旋流腔异侧射流孔、旋流腔同侧射流孔进出旋流腔,并与常规凸台扰流柱冷却结构进行了对比数值研究,分析其强化换热机理和效果.结果表明:旋流腔的结构和冷气的进流布置对旋流冷却性能的影响很大,冷气从旋流腔某侧射流孔进出的旋流冷却结构不仅在流向截面产生涡旋,在展向截面也会产生涡旋,从而有效强化对流换热;相比凸台扰流柱冷却结构,旋流冷却结构能够增强换热,平均努塞尔数增大6.8%~22.9%,但流动阻力也随之增加;冷气从旋流腔异侧射流孔进出的冷却结构强化换热能力较高;而冷气从旋流腔同侧射流孔进出的冷却结构流动换热综合系数比凸台扰流柱提高4.2%,综合性能相对较优.

     

  • [1] Metzger D E, Berry R A, Bronson J P.Developing heat transfer in rectangular ducts with staggered arrays of short pin fins[J].Journal of Heat Transfer, 1982, 104(4):700-706.
    [2] Chyu M K, Hsing Y C, Natarajan V.Convective heat transfer of cubic fin arrays in a narrow channel[J].Journal of Turbomachinery, 1998, 120(2):362-367.
    [3] Hwang J J, Lui C C.Measurement of endwall heat transfer and pressure drop in a pin-fin wedge duct[J].International Journal of Heat and Mass Transfer, 2002, 45(4):877-889.
    [4] Giovanni T.Heat transfer and pressure drop in a rectangular channel with diamond-shaped elements[J].International Journal of Heat and Mass Transfer, 2001, 44(8):3529-3541.
    [5] 王奉明, 张靖周, 王锁芳.不同形状扰流柱矩形通道内流动特性研究[J].航空学报, 2007, 28(1):37-41. WANG Fengming, ZHANG Jingzhou, WANG Suofang.Study of flow characteristics inside rectangular channel with different pin fins[J].Acta Aeronautica et Astronautica Sinica, 2007, 28(1):37-41.(in Chinese)
    [6] 张丽, 朱惠人, 刘松龄, 等.短扰流柱排端壁的平均换热实验[J].推进技术, 2008, 29(5):523-526, 556. ZHANG Li, ZHU Huiren, LIU Songling, et al.Experiments on heat transfer in trapezoidal channel with short pin-fin arrays[J].Journal of Propulsion Technology, 2008, 29(5):523-526, 556.(in Chinese)
    [7] 谭晓茗, 胡训尧, 张靖周.涡轮叶片尾缘梯形通道异形扰流柱流动换热特性实验[J].航空动力学报, 2012, 27(2):319-325. TAN Xiaoming, HU Xunyao, ZHANG Jingzhou.Experimental on flow and heat transfer characteristics in trapezoidal passage of turbine blade trailing with different pin-fins[J].Journal of Aerospace Power, 2012, 27(2):319-325.(in Chinese)
    [8] Buchlin J M.Convective heat transfer in a channel with perforated ribs[J].International Journal of Thermal Science, 2002, 41(4):332-340.
    [9] 陶智, 袁星, 丁水汀, 等.涡轮叶片尾缘通道中纵向肋对换热特性的影响[J].航空动力学报, 2008, 23(7):1189-1193. TAO Zhi, YUAN Xing, DING Shuiting, et al.Effect of different clapboards structure in turbine blade trailing edge complex passages on heat transfer characteristics[J].Journal of Aerospace Power, 2008, 23(7):1189-1193.(in Chinese)
    [10] 邓宏武, 谭艳, 王佳仁, 等.带交错肋结构涡轮叶片复合通道的实验[J].航空动力学报, 2010, 25(9):1931-1937. DENG Hongwu, TAN Yan, WANG Jiaren, et al.Experimental study on the turbine blade cooling channel with crossed-ribs[J].Journal of Aerospace Power, 2010, 25(9):1931-1937.(in Chinese)
    [11] Taslim M E, Spring S D, Mehlman B P.Experimental investigation of film cooling effectiveness for slots of various exits geometries[J].Journal of Thermophysics and Heat Transfer, 1992, 6(2):302-307.
    [12] YUAN Hepeng, ZHU Huiren, KONG Manzhao.Effects of blowing ratio measured by liquid crystal on heat transfer characteristics of trailing edge cutback[J].Chinese Journal of Aeronautics, 2008, 21(6):488-495.
    [13] Joo J, Durbin P.Simulation of turbine blade trailing edge cooling[J].Journal of Fluid Engineering, 2009, 131(2):021102.1-021102.14.
    [14] Hedlund C R, Ligrani P M, Glezer B, et al.Heat transfer in a swirl chamber at different temperature ratios and Reynolds numbers[J].International Journal of Heat and Mass Transfer, 1999, 42(6):4081-4091.
    [15] Hedlund C R, Ligrani P M.Local swirl chamber heat transfer and flow structure at different Reynolds numbers[J].Journal of Turbomachinery, 2000, 122(3):375-385.
    [16] Glezer B, Moon H K.A novel technique for the internal blade cooling[R].ASME Paper 96-GT-181, 1996.
    [17] Qian C, Flannery K, Saito K, et al.Innovative vortex cooling concept and its application to turbine airfoil trailing edge cooling design[R].AIAA 97-3013, 1997.
    [18] Khalatov A A, Syred N, Bowen P J, et al.Quasi two-dimensional cyclone-jet cooling configuration:evaluation of heat transfer and pressure losses[R].ASME Paper 2001-GT-0182, 2001.
    [19] Hedlund C R, Ligrani P M, Glezer B, et al.Heat transfer and flow phenomena in a swirl chamber simulating turbine blade internal cooling[J].Journal of Turbomachinery, 1999, 121(4):804-813.
    [20] Ekkad S V, Pamula G, Acharya S.Influence of crossflow-induced swirl and impingement on heat transfer in an internal coolant passage of a turbine airfoil[J].Journal of Heat Transfer, 2000, 122(3):421-429.
    [21] John P C W L, Ireland P T, Harvey N W.Measurement of heat transfer coefficient distributions and flow field in a model of a turbine blade cooling passage with tangential injection[R].ASME Paper 2006-GT-90352, 2006.
    [22] 刘高文, 薛彪, 彭力, 等.叶片前缘旋流和常规冲击对比数值研究[J].推进技术, 2011, 32(4):576-585. LIU Gaowen, XUE Biao, PENG Li, et al.Numerical investigation on difference between blade leading edge vortex and normal impingement cooling[J].Journal of Propulsion Technology, 2011, 32(4):576-585.(in Chinese)
  • 加载中
计量
  • 文章访问数:  1638
  • HTML浏览量:  2
  • PDF量:  1120
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-01
  • 刊出日期:  2014-01-28

目录

    /

    返回文章
    返回